vllm/tests/kernels/test_fp8_quant.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

117 lines
4.5 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import pytest
import torch
import vllm._custom_ops as ops
from tests.kernels.quant_utils import (FP8_DTYPE,
ref_dynamic_per_tensor_fp8_quant,
ref_dynamic_per_token_quant)
from tests.kernels.utils import opcheck
from vllm.platforms import current_platform
DTYPES = [torch.half, torch.bfloat16, torch.float]
HIDDEN_SIZES = [1, 2, 3, 4, 16, 67, 768, 2048, 5120, 5137, 8192,
8193] # Arbitrary values for testing
HIDDEN_SIZES += list(range(1024, 1033)) # vectorized conversion edge cases
NUM_TOKENS = [1, 7, 83, 4096] # Arbitrary values for testing
SCALE_UBS = [True, False]
SEEDS = [0]
def opcheck_fp8_quant(output,
input,
scale=None,
scale_ub=None,
use_per_token_if_dynamic=False):
if scale is not None:
opcheck(torch.ops._C.static_scaled_fp8_quant, (output, input, scale))
elif use_per_token_if_dynamic:
scale = torch.empty((input.shape[0], 1),
device=input.device,
dtype=torch.float32)
opcheck(torch.ops._C.dynamic_per_token_scaled_fp8_quant,
(output, input, scale, scale_ub))
else:
scale = torch.empty((input.numel() // input.shape[-1], 1),
device=input.device,
dtype=torch.float32)
opcheck(torch.ops._C.dynamic_scaled_fp8_quant, (output, input, scale))
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("scale_ub", SCALE_UBS)
@pytest.mark.parametrize("seed", SEEDS)
@torch.inference_mode()
def test_dynamic_per_token_fp8_quant(num_tokens: int, hidden_size: int,
dtype: torch.dtype, scale_ub: bool,
seed: int) -> None:
current_platform.seed_everything(seed)
x = torch.rand(num_tokens, hidden_size, dtype=dtype,
device="cuda") + 1e-6 # avoid nans
scale_ub = torch.mean(x).to(dtype=torch.float32, device='cuda') \
if scale_ub else None
ref_out, ref_scales = ref_dynamic_per_token_quant(x, FP8_DTYPE, scale_ub)
ops_out, ops_scales = ops.scaled_fp8_quant(x,
scale_ub=scale_ub,
use_per_token_if_dynamic=True)
torch.testing.assert_close(ref_scales, ops_scales)
torch.testing.assert_close(ref_out.to(dtype=torch.float32),
ops_out.to(dtype=torch.float32))
opcheck_fp8_quant(ops_out,
x,
None,
scale_ub,
use_per_token_if_dynamic=True)
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@torch.inference_mode()
def test_dynamic_per_tensor_fp8_quant(num_tokens: int, hidden_size: int,
dtype: torch.dtype, seed: int) -> None:
current_platform.seed_everything(seed)
x = torch.rand(num_tokens, hidden_size, dtype=dtype, device="cuda")
ref_out, ref_scale = ref_dynamic_per_tensor_fp8_quant(x)
ops_out, ops_scale = ops.scaled_fp8_quant(x)
torch.testing.assert_close(ref_scale, ops_scale)
torch.testing.assert_close(ref_out.to(dtype=torch.float32),
ops_out.to(dtype=torch.float32))
opcheck_fp8_quant(ops_out, x)
# Regression test for a case with large activations where an int32 index cannot
# represent the number of elements.
@torch.inference_mode()
@pytest.mark.parametrize("seed", SEEDS)
def test_fp8_quant_large(seed: int) -> None:
current_platform.seed_everything(seed)
num_tokens = 1024000 # Mistral-Nemo's max_position_embeddings
hidden_size = 1152 # Smallest hidden_size to reproduce the error
dtype = torch.bfloat16
x = torch.rand(num_tokens, hidden_size, dtype=dtype, device="cuda")
ref_out, scale = ref_dynamic_per_tensor_fp8_quant(x)
ops_out, _ = ops.scaled_fp8_quant(x, scale)
# Minimize memory footprint in this test by freeing x and upconverting
# the outputs in place. (torch.allclose does not support fp8)
del x
ref_out = ref_out.to(dtype=dtype)
ops_out = ops_out.to(dtype=dtype)
torch.testing.assert_close(ref_out, ops_out)