vllm/tests/kernels/test_cascade_flash_attn.py
2025-03-02 17:34:51 -08:00

190 lines
6.7 KiB
Python
Executable File

# SPDX-License-Identifier: Apache-2.0
from typing import Optional
import pytest
import torch
from vllm.platforms import current_platform
from vllm.v1.attention.backends.flash_attn import (cascade_attention,
merge_attn_states)
from vllm.vllm_flash_attn import (fa_version_unsupported_reason,
flash_attn_varlen_func,
is_fa_version_supported)
NUM_HEADS = [(4, 4), (8, 2), (16, 2)]
HEAD_SIZES = [128, 192, 256]
BLOCK_SIZES = [16]
DTYPES = [torch.float16, torch.bfloat16]
@pytest.mark.parametrize("num_tokens", [1, 39, 16912])
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("dtype", DTYPES)
@torch.inference_mode()
def test_merge_kernel(
num_tokens: int,
num_heads: tuple[int, int],
head_size: int,
dtype: torch.dtype,
):
torch.set_default_device("cuda")
current_platform.seed_everything(0)
num_query_heads = num_heads[0]
num_kv_heads = num_heads[1]
assert num_query_heads % num_kv_heads == 0
# Prepare inputs.
prefix_output = torch.randn(num_tokens,
num_query_heads,
head_size,
dtype=dtype)
suffix_output = torch.randn(num_tokens,
num_query_heads,
head_size,
dtype=dtype)
prefix_lse = torch.randn(num_query_heads, num_tokens, dtype=torch.float32)
suffix_lse = torch.randn(num_query_heads, num_tokens, dtype=torch.float32)
# Run the kernel.
output = torch.empty(num_tokens, num_query_heads, head_size, dtype=dtype)
merge_attn_states(output, prefix_output, prefix_lse, suffix_output,
suffix_lse)
# Reference implementation.
max_lse = torch.maximum(prefix_lse, suffix_lse)
p_lse = torch.exp(prefix_lse - max_lse)
s_lse = torch.exp(suffix_lse - max_lse)
p_scale = p_lse / (p_lse + s_lse)
s_scale = s_lse / (p_lse + s_lse)
p_scale = p_scale.transpose(0, 1).unsqueeze(2)
s_scale = s_scale.transpose(0, 1).unsqueeze(2)
ref_output = p_scale * prefix_output + s_scale * suffix_output
ref_output = ref_output.to(dtype)
# Compare the results.
torch.testing.assert_close(output, ref_output, atol=1e-2, rtol=1e-2)
CASES = [
# Case 1. A general case.
([(129, 871), (18, 280), (37, 988), (1023, 2304), (1, 257)], 256),
# Case 2. Flash-decoding case.
([(1, 1023), (1, 879), (1, 778), (1, 1777)] * 100, 512),
]
@pytest.mark.parametrize("seq_lens_and_common_prefix", CASES)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
@pytest.mark.parametrize("soft_cap", [None, 50])
@pytest.mark.parametrize("num_blocks", [2048])
@pytest.mark.parametrize("fa_version", [2, 3])
@torch.inference_mode()
def test_cascade(
seq_lens_and_common_prefix: tuple[list[tuple[int, int]], int],
num_heads: tuple[int, int],
head_size: int,
dtype: torch.dtype,
block_size: int,
soft_cap: Optional[float],
num_blocks: int,
fa_version: int,
) -> None:
torch.set_default_device("cuda")
if not is_fa_version_supported(fa_version):
pytest.skip(f"Flash attention version {fa_version} not supported due "
f"to: \"{fa_version_unsupported_reason(fa_version)}\"")
current_platform.seed_everything(0)
window_size = (-1, -1)
scale = head_size**-0.5
num_query_heads = num_heads[0]
num_kv_heads = num_heads[1]
assert num_query_heads % num_kv_heads == 0
key_cache = torch.randn(num_blocks,
block_size,
num_kv_heads,
head_size,
dtype=dtype)
value_cache = torch.randn_like(key_cache)
seq_lens, common_prefix_len = seq_lens_and_common_prefix
num_seqs = len(seq_lens)
query_lens = [x[0] for x in seq_lens]
kv_lens = [x[1] for x in seq_lens]
max_query_len = max(query_lens)
max_kv_len = max(kv_lens)
total_num_query_tokens = sum(query_lens)
query = torch.randn(total_num_query_tokens,
num_query_heads,
head_size,
dtype=dtype)
cu_query_lens = torch.tensor([0] + query_lens,
dtype=torch.int32).cumsum(dim=0,
dtype=torch.int32)
kv_lens_tensor = torch.tensor(kv_lens, dtype=torch.int32)
max_num_blocks_per_seq = (max_kv_len + block_size - 1) // block_size
block_tables = torch.randint(0,
num_blocks,
(num_seqs, max_num_blocks_per_seq),
dtype=torch.int32)
assert common_prefix_len > 0
assert common_prefix_len % block_size == 0
num_common_kv_blocks = common_prefix_len // block_size
# Make sure the first `num_common_kv_blocks` blocks are the same.
block_tables[:, :num_common_kv_blocks] = \
block_tables[0, :num_common_kv_blocks]
# Run the regular attention.
ref_output = flash_attn_varlen_func(
q=query,
k=key_cache,
v=value_cache,
cu_seqlens_q=cu_query_lens,
seqused_k=kv_lens_tensor,
max_seqlen_q=max_query_len,
max_seqlen_k=max_kv_len,
softmax_scale=scale,
causal=True,
window_size=window_size,
block_table=block_tables,
softcap=soft_cap if soft_cap is not None else 0,
)
# Run cascade attention.
assert all(common_prefix_len < kv_len for kv_len in kv_lens)
cu_prefix_query_lens = torch.tensor([0, total_num_query_tokens],
dtype=torch.int32)
prefix_kv_lens = torch.tensor([common_prefix_len], dtype=torch.int32)
suffix_kv_lens = kv_lens_tensor - common_prefix_len
output = torch.empty_like(query)
cascade_attention(
output=output,
query=query,
key_cache=key_cache,
value_cache=value_cache,
cu_query_lens=cu_query_lens,
max_query_len=max_query_len,
cu_prefix_query_lens=cu_prefix_query_lens,
prefix_kv_lens=prefix_kv_lens,
suffix_kv_lens=suffix_kv_lens,
max_kv_len=max_kv_len,
softmax_scale=scale,
alibi_slopes=None,
sliding_window=window_size,
logits_soft_cap=soft_cap if soft_cap is not None else 0,
block_table=block_tables,
common_prefix_len=common_prefix_len,
fa_version=fa_version,
)
# Compare the results.
torch.testing.assert_close(output, ref_output, atol=1e-2, rtol=1e-2)