vllm/tests/entrypoints/test_chat_utils.py
Cyrus Leung c5bc0e7fcc
[Misc] Update chat utils tests (#16520)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-12 06:48:43 +00:00

951 lines
26 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import warnings
from typing import Optional
import pytest
from packaging.version import Version
from transformers import __version__ as TRANSFORMERS_VERSION
from vllm.assets.image import ImageAsset
from vllm.config import ModelConfig
from vllm.entrypoints.chat_utils import (_try_extract_ast, load_chat_template,
parse_chat_messages,
parse_chat_messages_futures,
resolve_chat_template_content_format,
resolve_hf_chat_template)
from vllm.entrypoints.llm import apply_hf_chat_template
from vllm.multimodal import MultiModalDataDict
from vllm.multimodal.utils import encode_image_base64
from vllm.transformers_utils.tokenizer_group import TokenizerGroup
from ..utils import VLLM_PATH
EXAMPLES_DIR = VLLM_PATH / "examples"
PHI3V_MODEL_ID = "microsoft/Phi-3.5-vision-instruct"
ULTRAVOX_MODEL_ID = "fixie-ai/ultravox-v0_5-llama-3_2-1b"
QWEN2AUDIO_MODEL_ID = "Qwen/Qwen2-Audio-7B-Instruct"
QWEN2VL_MODEL_ID = "Qwen/Qwen2-VL-2B-Instruct"
QWEN25VL_MODEL_ID = "Qwen/Qwen2.5-VL-3B-Instruct"
MLLAMA_MODEL_ID = "meta-llama/Llama-3.2-11B-Vision-Instruct"
LLAMA_GUARD_MODEL_ID = "meta-llama/Llama-Guard-3-1B"
HERMES_MODEL_ID = "NousResearch/Hermes-3-Llama-3.1-8B"
MISTRAL_MODEL_ID = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
@pytest.fixture(scope="function")
def phi3v_model_config():
return ModelConfig(PHI3V_MODEL_ID,
task="generate",
tokenizer=PHI3V_MODEL_ID,
tokenizer_mode="auto",
trust_remote_code=True,
dtype="auto",
seed=0,
limit_mm_per_prompt={
"image": 2,
})
@pytest.fixture(scope="module")
def phi3v_tokenizer():
return TokenizerGroup(
tokenizer_id=PHI3V_MODEL_ID,
enable_lora=False,
max_num_seqs=5,
max_input_length=None,
)
@pytest.fixture(scope="module")
def mllama_model_config():
return ModelConfig(MLLAMA_MODEL_ID,
task="generate",
tokenizer=MLLAMA_MODEL_ID,
tokenizer_mode="auto",
trust_remote_code=True,
dtype="auto",
seed=0,
limit_mm_per_prompt={
"image": 2,
})
@pytest.fixture(scope="module")
def mllama_tokenizer():
return TokenizerGroup(
MLLAMA_MODEL_ID,
enable_lora=False,
max_num_seqs=5,
max_input_length=None,
)
@pytest.fixture(scope="function")
def mistral_model_config():
return ModelConfig(MISTRAL_MODEL_ID,
task="generate",
tokenizer=MISTRAL_MODEL_ID,
tokenizer_mode="auto",
trust_remote_code=True,
dtype="auto",
seed=0,
limit_mm_per_prompt={
"image": 2,
})
@pytest.fixture(scope="module")
def mistral_tokenizer():
return TokenizerGroup(
tokenizer_id=MISTRAL_MODEL_ID,
enable_lora=False,
max_num_seqs=5,
max_input_length=None,
)
@pytest.fixture(scope="module")
def image_url():
image = ImageAsset('cherry_blossom')
base64 = encode_image_base64(image.pil_image)
return f"data:image/jpeg;base64,{base64}"
def _assert_mm_data_is_image_input(
mm_data: Optional[MultiModalDataDict],
image_count: int,
) -> None:
assert mm_data is not None
assert set(mm_data.keys()) == {"image"}
image_data = mm_data.get("image")
assert image_data is not None
assert isinstance(image_data, list) and len(image_data) == image_count
def test_parse_chat_messages_single_image(
phi3v_model_config,
phi3v_tokenizer,
image_url,
):
conversation, mm_data = parse_chat_messages(
[{
"role":
"user",
"content": [{
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "text",
"text": "What's in the image?"
}]
}],
phi3v_model_config,
phi3v_tokenizer,
content_format="string",
)
assert conversation == [{
"role": "user",
"content": "<|image_1|>\nWhat's in the image?"
}]
_assert_mm_data_is_image_input(mm_data, 1)
def test_parse_chat_messages_empty_system(
mistral_model_config,
mistral_tokenizer,
):
# Test string format
conversation, _ = parse_chat_messages(
[{
"role": "system",
"content": ""
}, {
"role": "user",
"content": [{
"type": "text",
"text": "Who are you?"
}]
}],
mistral_model_config,
mistral_tokenizer,
content_format="string",
)
assert conversation == [{
"role": "system",
"content": ""
}, {
"role": "user",
"content": "Who are you?"
}]
# Test openai format
conversation, _ = parse_chat_messages(
[{
"role": "system",
"content": ""
}, {
"role": "user",
"content": [{
"type": "text",
"text": "Who are you?"
}]
}],
mistral_model_config,
mistral_tokenizer,
content_format="openai",
)
assert conversation == [{
"role": "system",
"content": [{
"type": "text",
"text": ""
}]
}, {
"role":
"user",
"content": [{
"type": "text",
"text": "Who are you?"
}]
}]
@pytest.mark.asyncio
async def test_parse_chat_messages_single_image_async(
phi3v_model_config,
phi3v_tokenizer,
image_url,
):
conversation, mm_future = parse_chat_messages_futures(
[{
"role":
"user",
"content": [{
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "text",
"text": "What's in the image?"
}]
}],
phi3v_model_config,
phi3v_tokenizer,
content_format="string",
)
assert conversation == [{
"role": "user",
"content": "<|image_1|>\nWhat's in the image?"
}]
_assert_mm_data_is_image_input(await mm_future, 1)
def test_parse_chat_messages_multiple_images(
phi3v_model_config,
phi3v_tokenizer,
image_url,
):
conversation, mm_data = parse_chat_messages(
[{
"role":
"user",
"content": [{
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "text",
"text": "What's in these images?"
}]
}],
phi3v_model_config,
phi3v_tokenizer,
content_format="string",
)
assert conversation == [{
"role":
"user",
"content":
"<|image_1|>\n<|image_2|>\nWhat's in these images?"
}]
_assert_mm_data_is_image_input(mm_data, 2)
@pytest.mark.asyncio
async def test_parse_chat_messages_multiple_images_async(
phi3v_model_config,
phi3v_tokenizer,
image_url,
):
conversation, mm_future = parse_chat_messages_futures(
[{
"role":
"user",
"content": [{
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "text",
"text": "What's in these images?"
}]
}],
phi3v_model_config,
phi3v_tokenizer,
content_format="string",
)
assert conversation == [{
"role":
"user",
"content":
"<|image_1|>\n<|image_2|>\nWhat's in these images?"
}]
_assert_mm_data_is_image_input(await mm_future, 2)
def test_parse_chat_messages_placeholder_already_in_prompt(
phi3v_model_config,
phi3v_tokenizer,
image_url,
):
conversation, mm_data = parse_chat_messages(
[{
"role":
"user",
"content": [{
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type":
"text",
"text":
"What's in <|image_1|> and how does it compare to <|image_2|>?"
}]
}],
phi3v_model_config,
phi3v_tokenizer,
content_format="string",
)
assert conversation == [{
"role":
"user",
"content":
"What's in <|image_1|> and how does it compare to <|image_2|>?"
}]
_assert_mm_data_is_image_input(mm_data, 2)
def test_parse_chat_messages_placeholder_one_already_in_prompt(
phi3v_model_config,
phi3v_tokenizer,
image_url,
):
conversation, mm_data = parse_chat_messages(
[{
"role":
"user",
"content": [
{
"type": "image_url",
"image_url": {
"url": image_url
}
},
{
"type": "image_url",
"image_url": {
"url": image_url
}
},
{
"type":
"text",
"text":
"What's in <|image_1|> and how does it compare to the other one?" # noqa: E501
}
]
}],
phi3v_model_config,
phi3v_tokenizer,
content_format="string",
)
assert conversation == [{
"role":
"user",
"content":
"<|image_2|>\nWhat's in <|image_1|> and how does it compare to the "
"other one?"
}]
_assert_mm_data_is_image_input(mm_data, 2)
def test_parse_chat_messages_multiple_images_across_messages(
phi3v_model_config,
phi3v_tokenizer,
image_url,
):
conversation, mm_data = parse_chat_messages(
[{
"role":
"user",
"content": [{
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "text",
"text": "What's in this image?"
}]
}, {
"role": "assistant",
"content": "Some stuff."
}, {
"role":
"user",
"content": [{
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "text",
"text": "What about this one?"
}]
}],
phi3v_model_config,
phi3v_tokenizer,
content_format="string",
)
assert conversation == [
{
"role": "user",
"content": "<|image_1|>\nWhat's in this image?"
},
{
"role": "assistant",
"content": "Some stuff."
},
{
"role": "user",
"content": "<|image_2|>\nWhat about this one?"
},
]
_assert_mm_data_is_image_input(mm_data, 2)
def test_parse_chat_messages_context_text_format(
phi3v_model_config,
phi3v_tokenizer,
):
conversation, mm_data = parse_chat_messages(
[{
"role": "user",
"content": [{
"type": "text",
"text": "What's in this text?"
}]
}, {
"role": "assistant",
"content": "Some stuff."
}, {
"role": "user",
"content": "What about this one?"
}],
phi3v_model_config,
phi3v_tokenizer,
content_format="openai",
)
assert conversation == [
{
"role": "user",
"content": [{
"type": "text",
"text": "What's in this text?"
}]
},
{
"role": "assistant",
"content": [{
"type": "text",
"text": "Some stuff."
}]
},
{
"role": "user",
"content": [{
"type": "text",
"text": "What about this one?"
}]
},
]
def test_parse_chat_messages_rejects_too_many_images_in_one_message(
phi3v_model_config,
phi3v_tokenizer,
image_url,
):
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore",
message="coroutine 'async_get_and_parse_image' was never awaited")
with pytest.raises(
ValueError,
match="At most 2 image\\(s\\) may be provided in one request\\."
):
parse_chat_messages(
[{
"role":
"user",
"content": [{
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "text",
"text": "What's in these images?"
}]
}],
phi3v_model_config,
phi3v_tokenizer,
content_format="string",
)
def test_parse_chat_messages_rejects_too_many_images_across_messages(
phi3v_model_config,
phi3v_tokenizer,
image_url,
):
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore",
message="coroutine 'async_get_and_parse_image' was never awaited")
with pytest.raises(
ValueError,
match="At most 2 image\\(s\\) may be provided in one request\\."
):
parse_chat_messages(
[{
"role":
"user",
"content": [{
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "text",
"text": "What's in this image?"
}]
}, {
"role": "assistant",
"content": "Some stuff."
}, {
"role":
"user",
"content": [{
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "text",
"text": "What about these two?"
}]
}],
phi3v_model_config,
phi3v_tokenizer,
content_format="string",
)
def test_parse_chat_messages_multiple_images_uncommon_input(
phi3v_model_config,
phi3v_tokenizer,
image_url,
):
conversation, mm_data = parse_chat_messages(
[{
"role":
"user",
"content": [
"What's in these images?", {
"image_url": image_url
}, {
"image_url": image_url
}
]
}],
phi3v_model_config,
phi3v_tokenizer,
content_format="string",
)
assert conversation == [{
"role":
"user",
"content":
"<|image_1|>\n<|image_2|>\nWhat's in these images?"
}]
_assert_mm_data_is_image_input(mm_data, 2)
### Mllama currently wraps images / texts as interleaved dictionaries
def test_mllama_single_image(
mllama_model_config,
mllama_tokenizer,
image_url,
):
"""Ensures that a single image is parsed correctly mllama."""
conversation, mm_data = parse_chat_messages(
[{
"role":
"user",
"content": [{
'type': 'text',
'text': 'The content of this image is:'
}, {
"image_url": image_url
}]
}],
mllama_model_config,
mllama_tokenizer,
content_format="openai",
)
_assert_mm_data_is_image_input(mm_data, 1)
assert conversation == [{
'role':
'user',
'content': [{
'type': 'text',
'text': 'The content of this image is:'
}, {
'type': 'image'
}]
}]
def test_mllama_interleaved_images(
mllama_model_config,
mllama_tokenizer,
image_url,
):
"""Ensures that multiple image are parsed as interleaved dicts."""
conversation, mm_data = parse_chat_messages(
[{
"role":
"user",
"content": [
{
'type': 'text',
'text': 'The content of the first image is:'
},
{
"image_url": image_url
},
{
'type': 'text',
'text': 'The content of the second image is:'
},
{
"image_url": image_url
},
]
}],
mllama_model_config,
mllama_tokenizer,
content_format="openai",
)
_assert_mm_data_is_image_input(mm_data, 2)
assert conversation == [{
'role':
'user',
'content': [{
'type': 'text',
'text': 'The content of the first image is:'
}, {
'type': 'image'
}, {
'type': 'text',
'text': 'The content of the second image is:'
}, {
'type': 'image'
}]
}]
@pytest.mark.parametrize("model", [MLLAMA_MODEL_ID])
def test_multimodal_image_parsing_matches_hf(model, image_url):
"""Checks end to end hf alignment for multimodal [image] parsing."""
def get_conversation(is_hf: bool):
img_part = {"type": "image_url", "image_url": {"url": image_url}}
if is_hf:
img_part = {'type': 'image'}
return [{
'role':
'user',
'content': [
{
'type': 'text',
'text': 'The content of the first image is:'
},
img_part,
{
'type': 'text',
'text': 'The content of the second image is:'
},
img_part,
{
'type': 'text',
'text': 'What animal is in the first image?'
},
]
}]
# Build a config for the model
model_config = ModelConfig(model,
task="generate",
tokenizer=model,
tokenizer_mode="auto",
trust_remote_code=True,
dtype="auto",
seed=0,
limit_mm_per_prompt={
"image": 2,
})
# Build the tokenizer group and grab the underlying tokenizer
tokenizer_group = TokenizerGroup(
model,
enable_lora=False,
max_num_seqs=5,
max_input_length=None,
)
tokenizer = tokenizer_group.tokenizer
# Build and parse a conversation with {"type": "image"} using the tokenizer
hf_conversation = get_conversation(is_hf=True)
hf_result = tokenizer.apply_chat_template(
hf_conversation,
tokenize=False,
add_generation_prompt=True,
)
# Now parse with vLLMs chat utils & apply the template
vllm_conversation = get_conversation(is_hf=False)
conversation, _ = parse_chat_messages(
vllm_conversation,
model_config,
tokenizer_group,
content_format="openai",
)
vllm_result = apply_hf_chat_template(
tokenizer,
trust_remote_code=model_config.trust_remote_code,
conversation=conversation,
chat_template=None,
tools=None,
add_generation_prompt=True,
)
assert hf_result == vllm_result
@pytest.mark.parametrize(
"model",
[
QWEN2VL_MODEL_ID, # tokenizer.chat_template is of type str
HERMES_MODEL_ID, # tokenizer.chat_template is of type dict
])
@pytest.mark.parametrize("use_tools", [True, False])
def test_resolve_hf_chat_template(sample_json_schema, model, use_tools):
"""checks that chat_template is a dict type for HF models."""
# Build the tokenizer group and grab the underlying tokenizer
tokenizer_group = TokenizerGroup(
model,
enable_lora=False,
max_num_seqs=5,
max_input_length=None,
)
tokenizer = tokenizer_group.tokenizer
tools = [{
"type": "function",
"function": {
"name": "dummy_function_name",
"description": "This is a dummy function",
"parameters": sample_json_schema
}
}] if use_tools else None
# Test detecting the tokenizer's chat_template
chat_template = resolve_hf_chat_template(
tokenizer,
chat_template=None,
tools=tools,
trust_remote_code=True,
)
assert isinstance(chat_template, str)
# NOTE: Qwen2-Audio default chat template is specially defined inside
# processor class instead of using `tokenizer_config.json`
# yapf: disable
@pytest.mark.parametrize(
("model", "expected_format"),
[(PHI3V_MODEL_ID, "string"),
(QWEN2VL_MODEL_ID, "openai"),
(QWEN25VL_MODEL_ID, "openai"),
(ULTRAVOX_MODEL_ID, "string"),
(QWEN2AUDIO_MODEL_ID, "openai"),
(MLLAMA_MODEL_ID, "openai"),
(LLAMA_GUARD_MODEL_ID, "openai")],
)
# yapf: enable
def test_resolve_content_format_hf_defined(model, expected_format):
if model == QWEN25VL_MODEL_ID and Version(TRANSFORMERS_VERSION) < Version(
"4.49.0"):
pytest.skip("Qwen2.5-VL requires transformers>=4.49.0")
tokenizer_group = TokenizerGroup(
model,
enable_lora=False,
max_num_seqs=5,
max_input_length=None,
)
tokenizer = tokenizer_group.tokenizer
# Test detecting the tokenizer's chat_template
chat_template = resolve_hf_chat_template(
tokenizer,
chat_template=None,
tools=None,
trust_remote_code=True,
)
assert isinstance(chat_template, str)
print("[TEXT]")
print(chat_template)
print("[AST]")
print(_try_extract_ast(chat_template))
resolved_format = resolve_chat_template_content_format(
None, # Test detecting the tokenizer's chat_template
None,
"auto",
tokenizer,
trust_remote_code=True,
)
assert resolved_format == expected_format
# yapf: disable
@pytest.mark.parametrize(
("template_path", "expected_format"),
[("template_alpaca.jinja", "string"),
("template_baichuan.jinja", "string"),
("template_blip2.jinja", "string"),
("template_chatglm.jinja", "string"),
("template_chatglm2.jinja", "string"),
("template_chatml.jinja", "string"),
("template_deepseek_vl2.jinja", "string"),
("template_dse_qwen2_vl.jinja", "openai"),
("template_falcon_180b.jinja", "string"),
("template_falcon.jinja", "string"),
("template_florence2.jinja", "string"),
("template_inkbot.jinja", "string"),
("template_llava.jinja", "string"),
("template_teleflm.jinja", "string"),
("template_vlm2vec.jinja", "openai"),
("tool_chat_template_granite_20b_fc.jinja", "string"),
("tool_chat_template_hermes.jinja", "string"),
("tool_chat_template_internlm2_tool.jinja", "string"),
("tool_chat_template_llama3.1_json.jinja", "openai"),
("tool_chat_template_llama3.2_json.jinja", "openai"),
("tool_chat_template_mistral_parallel.jinja", "string"),
("tool_chat_template_mistral.jinja", "string")],
)
# yapf: enable
def test_resolve_content_format_examples(template_path, expected_format):
tokenizer_group = TokenizerGroup(
PHI3V_MODEL_ID,
enable_lora=False,
max_num_seqs=5,
max_input_length=None,
)
dummy_tokenizer = tokenizer_group.tokenizer
dummy_tokenizer.chat_template = None
chat_template = load_chat_template(EXAMPLES_DIR / template_path)
assert isinstance(chat_template, str)
print("[TEXT]")
print(chat_template)
print("[AST]")
print(_try_extract_ast(chat_template))
resolved_format = resolve_chat_template_content_format(
chat_template,
None,
"auto",
dummy_tokenizer,
trust_remote_code=True,
)
assert resolved_format == expected_format