vllm/tests/entrypoints/openai/test_lora_adapters.py
Varun Sundar Rabindranath 1286211f57
[Bugfix] LoRA V1: add and fix entrypoints tests (#15715)
Signed-off-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2025-03-28 21:10:41 -07:00

316 lines
10 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import asyncio
import json
import shutil
from contextlib import suppress
import openai # use the official client for correctness check
import pytest
import pytest_asyncio
# downloading lora to test lora requests
from huggingface_hub import snapshot_download
from ...utils import RemoteOpenAIServer
# any model with a chat template should work here
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
# technically this needs Mistral-7B-v0.1 as base, but we're not testing
# generation quality here
LORA_NAME = "typeof/zephyr-7b-beta-lora"
BADREQUEST_CASES = [
(
"test_rank",
{
"r": 1024
},
"is greater than max_lora_rank",
),
(
"test_bias",
{
"bias": "all"
},
"Adapter bias cannot be used without bias_enabled",
),
("test_dora", {
"use_dora": True
}, "does not yet support DoRA"),
(
"test_modules_to_save",
{
"modules_to_save": ["lm_head"]
},
"only supports modules_to_save being None",
),
]
@pytest.fixture(scope="module")
def zephyr_lora_files():
return snapshot_download(repo_id=LORA_NAME)
@pytest.fixture(scope="module")
def monkeypatch_module():
from _pytest.monkeypatch import MonkeyPatch
mpatch = MonkeyPatch()
yield mpatch
mpatch.undo()
@pytest.fixture(scope="module", params=[False, True])
def server_with_lora_modules_json(request, monkeypatch_module,
zephyr_lora_files):
use_v1 = request.param
monkeypatch_module.setenv('VLLM_USE_V1', '1' if use_v1 else '0')
# Define the json format LoRA module configurations
lora_module_1 = {
"name": "zephyr-lora",
"path": zephyr_lora_files,
"base_model_name": MODEL_NAME
}
lora_module_2 = {
"name": "zephyr-lora2",
"path": zephyr_lora_files,
"base_model_name": MODEL_NAME
}
args = [
# use half precision for speed and memory savings in CI environment
"--dtype",
"bfloat16",
"--max-model-len",
"8192",
"--enforce-eager",
# lora config below
"--enable-lora",
"--lora-modules",
json.dumps(lora_module_1),
json.dumps(lora_module_2),
"--max-lora-rank",
"64",
"--max-cpu-loras",
"2",
"--max-num-seqs",
"64",
]
# Enable the /v1/load_lora_adapter endpoint
envs = {"VLLM_ALLOW_RUNTIME_LORA_UPDATING": "True"}
with RemoteOpenAIServer(MODEL_NAME, args, env_dict=envs) as remote_server:
yield remote_server
@pytest_asyncio.fixture
async def client(server_with_lora_modules_json):
async with server_with_lora_modules_json.get_async_client(
) as async_client:
yield async_client
@pytest.mark.asyncio
async def test_static_lora_lineage(client: openai.AsyncOpenAI,
zephyr_lora_files):
models = await client.models.list()
models = models.data
served_model = models[0]
lora_models = models[1:]
assert served_model.id == MODEL_NAME
assert served_model.root == MODEL_NAME
assert served_model.parent is None
assert all(lora_model.root == zephyr_lora_files
for lora_model in lora_models)
assert all(lora_model.parent == MODEL_NAME for lora_model in lora_models)
assert lora_models[0].id == "zephyr-lora"
assert lora_models[1].id == "zephyr-lora2"
@pytest.mark.asyncio
async def test_dynamic_lora_lineage(client: openai.AsyncOpenAI,
zephyr_lora_files):
response = await client.post("load_lora_adapter",
cast_to=str,
body={
"lora_name": "zephyr-lora-3",
"lora_path": zephyr_lora_files
})
# Ensure adapter loads before querying /models
assert "success" in response
models = await client.models.list()
models = models.data
dynamic_lora_model = models[-1]
assert dynamic_lora_model.root == zephyr_lora_files
assert dynamic_lora_model.parent == MODEL_NAME
assert dynamic_lora_model.id == "zephyr-lora-3"
@pytest.mark.asyncio
async def test_dynamic_lora_not_found(client: openai.AsyncOpenAI):
with pytest.raises(openai.NotFoundError):
await client.post("load_lora_adapter",
cast_to=str,
body={
"lora_name": "notfound",
"lora_path": "/not/an/adapter"
})
@pytest.mark.asyncio
async def test_dynamic_lora_invalid_files(client: openai.AsyncOpenAI,
tmp_path):
invalid_files = tmp_path / "invalid_files"
invalid_files.mkdir()
(invalid_files / "adapter_config.json").write_text("this is not json")
with pytest.raises(openai.BadRequestError):
await client.post("load_lora_adapter",
cast_to=str,
body={
"lora_name": "invalid-json",
"lora_path": str(invalid_files)
})
@pytest.mark.asyncio
@pytest.mark.parametrize("test_name,config_change,expected_error",
BADREQUEST_CASES)
async def test_dynamic_lora_badrequests(client: openai.AsyncOpenAI, tmp_path,
zephyr_lora_files, test_name: str,
config_change: dict,
expected_error: str):
# Create test directory
test_dir = tmp_path / test_name
# Copy adapter files
shutil.copytree(zephyr_lora_files, test_dir)
# Load and modify configuration
config_path = test_dir / "adapter_config.json"
with open(config_path) as f:
adapter_config = json.load(f)
# Apply configuration changes
adapter_config.update(config_change)
# Save modified configuration
with open(config_path, "w") as f:
json.dump(adapter_config, f)
# Test loading the adapter
with pytest.raises(openai.BadRequestError, match=expected_error):
await client.post("load_lora_adapter",
cast_to=str,
body={
"lora_name": test_name,
"lora_path": str(test_dir)
})
@pytest.mark.asyncio
async def test_multiple_lora_adapters(client: openai.AsyncOpenAI, tmp_path,
zephyr_lora_files):
"""Validate that many loras can be dynamically registered and inferenced
with concurrently"""
# This test file configures the server with --max-cpu-loras=2 and this test
# will concurrently load 10 adapters, so it should flex the LRU cache
async def load_and_run_adapter(adapter_name: str):
await client.post("load_lora_adapter",
cast_to=str,
body={
"lora_name": adapter_name,
"lora_path": str(zephyr_lora_files)
})
for _ in range(3):
await client.completions.create(
model=adapter_name,
prompt=["Hello there", "Foo bar bazz buzz"],
max_tokens=5,
)
lora_tasks = []
for i in range(10):
lora_tasks.append(
asyncio.create_task(load_and_run_adapter(f"adapter_{i}")))
results, _ = await asyncio.wait(lora_tasks)
for r in results:
assert not isinstance(r, Exception), f"Got exception {r}"
@pytest.mark.asyncio
async def test_loading_invalid_adapters_does_not_break_others(
client: openai.AsyncOpenAI, tmp_path, zephyr_lora_files):
invalid_files = tmp_path / "invalid_files"
invalid_files.mkdir()
(invalid_files / "adapter_config.json").write_text("this is not json")
stop_good_requests_event = asyncio.Event()
async def run_good_requests(client):
# Run chat completions requests until event set
results = []
while not stop_good_requests_event.is_set():
try:
batch = await client.completions.create(
model="zephyr-lora",
prompt=["Hello there", "Foo bar bazz buzz"],
max_tokens=5,
)
results.append(batch)
except Exception as e:
results.append(e)
return results
# Create task to run good requests
good_task = asyncio.create_task(run_good_requests(client))
# Run a bunch of bad adapter loads
for _ in range(25):
with suppress(openai.NotFoundError):
await client.post("load_lora_adapter",
cast_to=str,
body={
"lora_name": "notfound",
"lora_path": "/not/an/adapter"
})
for _ in range(25):
with suppress(openai.BadRequestError):
await client.post("load_lora_adapter",
cast_to=str,
body={
"lora_name": "invalid",
"lora_path": str(invalid_files)
})
# Ensure all the running requests with lora adapters succeeded
stop_good_requests_event.set()
results = await good_task
for r in results:
assert not isinstance(r, Exception), f"Got exception {r}"
# Ensure we can load another adapter and run it
await client.post("load_lora_adapter",
cast_to=str,
body={
"lora_name": "valid",
"lora_path": zephyr_lora_files
})
await client.completions.create(
model="valid",
prompt=["Hello there", "Foo bar bazz buzz"],
max_tokens=5,
)