
Signed-off-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com> Co-authored-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com> Co-authored-by: Nicolò Lucchesi <nlucches@redhat.com> Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com> Co-authored-by: Michael Goin <michael@neuralmagic.com>
64 lines
2.0 KiB
Python
64 lines
2.0 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
"""Test the different finish_reason="stop" situations during generation:
|
|
1. One of the provided stop strings
|
|
2. One of the provided stop tokens
|
|
3. The EOS token
|
|
|
|
Run `pytest tests/engine/test_stop_reason.py`.
|
|
"""
|
|
|
|
import pytest
|
|
import transformers
|
|
|
|
from vllm import SamplingParams
|
|
|
|
MODEL = "distilbert/distilgpt2"
|
|
STOP_STR = "."
|
|
SEED = 42
|
|
MAX_TOKENS = 1024
|
|
|
|
|
|
@pytest.fixture
|
|
def vllm_model(vllm_runner):
|
|
with vllm_runner(MODEL) as vllm_model:
|
|
yield vllm_model
|
|
|
|
|
|
def test_stop_reason(vllm_model, example_prompts):
|
|
tokenizer = transformers.AutoTokenizer.from_pretrained(MODEL)
|
|
stop_token_id = tokenizer.convert_tokens_to_ids(STOP_STR)
|
|
llm = vllm_model.model
|
|
|
|
# test stop token
|
|
outputs = llm.generate(example_prompts,
|
|
sampling_params=SamplingParams(
|
|
ignore_eos=True,
|
|
seed=SEED,
|
|
max_tokens=MAX_TOKENS,
|
|
stop_token_ids=[stop_token_id]))
|
|
for output in outputs:
|
|
output = output.outputs[0]
|
|
assert output.finish_reason == "stop"
|
|
assert output.stop_reason == stop_token_id
|
|
|
|
# test stop string
|
|
outputs = llm.generate(example_prompts,
|
|
sampling_params=SamplingParams(
|
|
ignore_eos=True,
|
|
seed=SEED,
|
|
max_tokens=MAX_TOKENS,
|
|
stop="."))
|
|
for output in outputs:
|
|
output = output.outputs[0]
|
|
assert output.finish_reason == "stop"
|
|
assert output.stop_reason == STOP_STR
|
|
|
|
# test EOS token
|
|
outputs = llm.generate(example_prompts,
|
|
sampling_params=SamplingParams(
|
|
seed=SEED, max_tokens=MAX_TOKENS))
|
|
for output in outputs:
|
|
output = output.outputs[0]
|
|
assert output.finish_reason == "length" or (
|
|
output.finish_reason == "stop" and output.stop_reason is None)
|