vllm/tests/async_engine/test_async_llm_engine.py
Robert Shaw d4d93db2c5
[V1] V1 Enablement Oracle (#13726)
Signed-off-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
Co-authored-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
Co-authored-by: Nicolò Lucchesi <nlucches@redhat.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: Michael Goin <michael@neuralmagic.com>
2025-03-14 22:02:20 -07:00

386 lines
11 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import asyncio
import os
import uuid
from asyncio import CancelledError
from copy import copy
from dataclasses import dataclass
from typing import Optional
import pytest
import pytest_asyncio
import torch
from vllm import SamplingParams
from vllm.config import ParallelConfig
from vllm.distributed import cleanup_dist_env_and_memory
from vllm.engine.async_llm_engine import AsyncEngineArgs, AsyncLLMEngine
from vllm.outputs import RequestOutput as RealRequestOutput
from vllm.sampling_params import RequestOutputKind
from ..utils import wait_for_gpu_memory_to_clear
@dataclass
class RequestOutput:
request_id: int
finished: bool = False
@dataclass
class MockModelConfig:
use_async_output_proc = True
class MockEngine:
def __init__(self):
self.step_calls = 0
self.add_request_calls = 0
self.abort_request_calls = 0
self.request_id = None
# Ugly, remove dependency when possible
self.parallel_config = ParallelConfig(1, 1, False)
self.model_config = MockModelConfig()
async def step_async(self, virtual_engine):
# PP size is 1, ignore virtual engine
self.step_calls += 1
return [RequestOutput(
request_id=self.request_id)] if self.request_id else []
async def process_model_inputs_async(self, *args, **kwargs):
pass
async def stop_remote_worker_execution_loop_async(self):
pass
def generate(self, request_id):
self.request_id = request_id
def stop_generating(self):
self.request_id = None
def add_request(self, **kwargs):
del kwargs # Unused
self.add_request_calls += 1
print(f'Request calls: {self.add_request_calls}')
async def add_request_async(self, **kwargs):
self.add_request_calls += 1
return
def abort_request(self, request_id):
del request_id # Unused
self.abort_request_calls += 1
def has_unfinished_requests(self):
return self.request_id is not None
def has_unfinished_requests_for_virtual_engine(self, virtual_engine):
return self.request_id is not None
class MockAsyncLLMEngine(AsyncLLMEngine):
_engine_class = MockEngine
@pytest.mark.asyncio
async def test_new_requests_event():
params = SamplingParams()
engine = MockAsyncLLMEngine()
engine.start_background_loop()
await asyncio.sleep(0.01)
assert engine.engine.step_calls == 0
await engine.add_request("1", "", params)
await asyncio.sleep(0.01)
assert engine.engine.add_request_calls == 1
assert engine.engine.step_calls == 1
await engine.add_request("2", "", params)
engine.engine.generate("2")
await asyncio.sleep(0)
await asyncio.sleep(0)
await asyncio.sleep(0)
assert engine.engine.add_request_calls == 2
assert engine.engine.step_calls >= 2
await asyncio.sleep(0.001)
assert engine.engine.step_calls >= 3
engine.engine.stop_generating()
await asyncio.sleep(0.001)
old_step_calls = engine.engine.step_calls
await asyncio.sleep(0.001)
assert engine.engine.step_calls == old_step_calls
await engine.add_request("3", "", params)
await asyncio.sleep(0.01)
assert engine.engine.add_request_calls == 3
assert engine.engine.step_calls == old_step_calls + 1
await asyncio.sleep(0.01)
assert engine.engine.add_request_calls == 3
assert engine.engine.step_calls == old_step_calls + 1
engine = MockAsyncLLMEngine()
assert engine.get_model_config() is not None
assert engine.get_tokenizer() is not None
assert engine.get_decoding_config() is not None
def start_engine():
wait_for_gpu_memory_to_clear(
devices=list(range(torch.cuda.device_count())),
threshold_bytes=2 * 2**30,
timeout_s=60,
)
num_scheduler_steps = int(os.getenv("NUM_SCHEDULER_STEPS", "1"))
print(f"Starting engine with num_scheduler_steps={num_scheduler_steps}")
return AsyncLLMEngine.from_engine_args(
AsyncEngineArgs(model="facebook/opt-125m",
enforce_eager=True,
num_scheduler_steps=num_scheduler_steps))
def uid() -> str:
return str(uuid.uuid4())
@pytest_asyncio.fixture(scope="module")
async def async_engine():
# We cannot use monkeypatch since this is a module
# scoped fixture and monkeypatch is function scoped.
previous_value = os.getenv("VLLM_USE_V1", None)
os.environ["VLLM_USE_V1"] = "0"
engine = await asyncio.get_event_loop().run_in_executor(executor=None,
func=start_engine)
try:
yield engine
finally:
engine.shutdown_background_loop()
del engine
await asyncio.sleep(0.1)
cleanup_dist_env_and_memory()
if previous_value:
os.environ["VLLM_USE_V1"] = previous_value
else:
del os.environ["VLLM_USE_V1"]
@pytest.fixture()
def should_do_global_cleanup_after_test(request) -> bool:
# So we can share the async engine fixture between these tests
return False
@pytest.mark.asyncio(scope="module")
@pytest.mark.parametrize("stop", [None, ["a stop string"]])
async def test_asyncio_run(async_engine, stop):
scheduler_config = await async_engine.get_scheduler_config()
num_scheduler_steps = scheduler_config.num_scheduler_steps
async def run(prompt: str):
sampling_params = SamplingParams(
temperature=0,
max_tokens=32,
min_tokens=32,
stop=stop,
)
output_count = 0
final_output = None
async for output in async_engine.generate(prompt,
sampling_params,
request_id=uid()):
output_count += 1
final_output = output
return final_output, output_count
results = await asyncio.gather(
run("test0"),
run("test0"),
)
assert len(results) == 2
first, second = results
# remove nondeterministic fields for comparison
first[0].metrics = None
second[0].metrics = None
first[0].request_id = None
second[0].request_id = None
assert str(first) == str(second)
output_count = results[0][1]
if num_scheduler_steps == 1:
assert output_count == 32
else:
assert 1 < output_count < 32
@pytest.mark.asyncio(scope="module")
@pytest.mark.parametrize("stop", [None, ["a stop string"]])
async def test_output_kinds(async_engine, stop):
"""Test that output_kind works as expected and that
results are equivalent across different kinds."""
scheduler_config = await async_engine.get_scheduler_config()
num_scheduler_steps = scheduler_config.num_scheduler_steps
sampling_params = SamplingParams(
temperature=0,
max_tokens=32,
min_tokens=32,
stop=stop,
)
async def run(prompt: str, kind: RequestOutputKind):
params = copy(sampling_params)
params.output_kind = kind
output_count = 0
final_output = None
async for output in async_engine.generate(prompt,
params,
request_id=uid()):
output_count += 1
final_output = output
assert final_output is not None
assert final_output.finished
return (final_output.prompt_token_ids,
final_output.outputs[0].token_ids,
final_output.outputs[0].text, output_count)
async def run_deltas(prompt: str):
params = copy(sampling_params)
params.output_kind = RequestOutputKind.DELTA
prompt_tokens = None
output_tokens: list[int] = []
output_text = ""
output_count = 0
final_output = None
async for output in async_engine.generate(prompt,
params,
request_id=uid()):
token_ids = output.outputs[0].token_ids
text = output.outputs[0].text
final_output = output
# Ensure we get prompt ids iff we haven't yet received output tokens
if output_tokens:
assert 1 <= len(token_ids) <= num_scheduler_steps
assert stop or text
assert not output.prompt_token_ids
else:
assert output.prompt_token_ids
prompt_tokens = output.prompt_token_ids
output_tokens.extend(token_ids)
output_text += text
output_count += 1
assert final_output is not None
assert final_output.finished
return prompt_tokens, output_tokens, output_text, output_count
results = await asyncio.gather(
run("common input prompt", RequestOutputKind.CUMULATIVE),
run("common input prompt", RequestOutputKind.FINAL_ONLY),
run_deltas("common input prompt"))
# Make sure outputs are the same
prompt_set = set(tuple(prompt_ids) for prompt_ids, _, _, _ in results)
assert len(prompt_set) == 1
text_set = set(text for _, _, text, _ in results)
assert len(text_set) == 1
tokens_set = set(tuple(ids) for _, ids, _, _ in results)
assert len(tokens_set) == 1
cumulative, final, deltas = results
# output message counts
assert cumulative[3] == deltas[3]
if num_scheduler_steps == 1:
assert cumulative[3] == 32
else:
assert 1 < cumulative[3] < 32
assert final[3] == 1
@pytest.mark.asyncio(scope="module")
@pytest.mark.parametrize("stop", [None, ["a stop string"]])
async def test_cancellation(async_engine, stop):
scheduler_config = await async_engine.get_scheduler_config()
num_scheduler_steps = scheduler_config.num_scheduler_steps
sampling_params = SamplingParams(
temperature=0,
min_tokens=13,
max_tokens=13,
stop=stop,
)
stop_at = 5 if num_scheduler_steps == 1 else 1
request_id = uid()
i = 0
with pytest.raises(CancelledError):
async for output in async_engine.generate("test2",
sampling_params,
request_id=request_id):
assert not output.finished
i += 1
if i == stop_at:
await async_engine.abort(request_id)
assert i == stop_at
@pytest.mark.asyncio(scope="module")
@pytest.mark.parametrize("stop", [None, ["a stop string"]])
async def test_delayed_generator(async_engine, stop):
scheduler_config = await async_engine.get_scheduler_config()
if scheduler_config.num_scheduler_steps != 1:
pytest.skip("no need to test this one with multistep")
sampling_params = SamplingParams(
temperature=0,
min_tokens=10,
max_tokens=10,
stop=stop,
)
stream = async_engine.generate("test3", sampling_params, request_id=uid())
i = 0
final_output: Optional[RealRequestOutput] = None
async for output in stream:
final_output = output
if i == 0:
# wait for generation to complete before consuming
# the remaining messages
await asyncio.sleep(1)
if i < 9:
assert not output.finished
i += 1
assert i == 10
assert final_output is not None
assert len(final_output.outputs[0].token_ids) == 10
assert final_output.finished