vllm/examples/online_serving/openai_chat_completion_client_with_tools.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

164 lines
5.1 KiB
Python

# SPDX-License-Identifier: Apache-2.0
"""
Set up this example by starting a vLLM OpenAI-compatible server with tool call
options enabled. For example:
IMPORTANT: for mistral, you must use one of the provided mistral tool call
templates, or your own - the model default doesn't work for tool calls with vLLM
See the vLLM docs on OpenAI server & tool calling for more details.
vllm serve --model mistralai/Mistral-7B-Instruct-v0.3 \
--chat-template examples/tool_chat_template_mistral.jinja \
--enable-auto-tool-choice --tool-call-parser mistral
OR
vllm serve --model NousResearch/Hermes-2-Pro-Llama-3-8B \
--chat-template examples/tool_chat_template_hermes.jinja \
--enable-auto-tool-choice --tool-call-parser hermes
"""
import json
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
# defaults to os.environ.get("OPENAI_API_KEY")
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
tools = [{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"city": {
"type":
"string",
"description":
"The city to find the weather for, e.g. 'San Francisco'"
},
"state": {
"type":
"string",
"description":
"the two-letter abbreviation for the state that the city is"
" in, e.g. 'CA' which would mean 'California'"
},
"unit": {
"type": "string",
"description": "The unit to fetch the temperature in",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["city", "state", "unit"]
}
}
}]
messages = [{
"role": "user",
"content": "Hi! How are you doing today?"
}, {
"role": "assistant",
"content": "I'm doing well! How can I help you?"
}, {
"role":
"user",
"content":
"Can you tell me what the temperate will be in Dallas, in fahrenheit?"
}]
chat_completion = client.chat.completions.create(messages=messages,
model=model,
tools=tools)
print("Chat completion results:")
print(chat_completion)
print("\n\n")
tool_calls_stream = client.chat.completions.create(messages=messages,
model=model,
tools=tools,
stream=True)
chunks = []
for chunk in tool_calls_stream:
chunks.append(chunk)
if chunk.choices[0].delta.tool_calls:
print(chunk.choices[0].delta.tool_calls[0])
else:
print(chunk.choices[0].delta)
arguments = []
tool_call_idx = -1
for chunk in chunks:
if chunk.choices[0].delta.tool_calls:
tool_call = chunk.choices[0].delta.tool_calls[0]
if tool_call.index != tool_call_idx:
if tool_call_idx >= 0:
print(
f"streamed tool call arguments: {arguments[tool_call_idx]}"
)
tool_call_idx = chunk.choices[0].delta.tool_calls[0].index
arguments.append("")
if tool_call.id:
print(f"streamed tool call id: {tool_call.id} ")
if tool_call.function:
if tool_call.function.name:
print(f"streamed tool call name: {tool_call.function.name}")
if tool_call.function.arguments:
arguments[tool_call_idx] += tool_call.function.arguments
if len(arguments):
print(f"streamed tool call arguments: {arguments[-1]}")
print("\n\n")
messages.append({
"role": "assistant",
"tool_calls": chat_completion.choices[0].message.tool_calls
})
# Now, simulate a tool call
def get_current_weather(city: str, state: str, unit: 'str'):
return ("The weather in Dallas, Texas is 85 degrees fahrenheit. It is "
"partly cloudly, with highs in the 90's.")
available_tools = {"get_current_weather": get_current_weather}
completion_tool_calls = chat_completion.choices[0].message.tool_calls
for call in completion_tool_calls:
tool_to_call = available_tools[call.function.name]
args = json.loads(call.function.arguments)
result = tool_to_call(**args)
print(result)
messages.append({
"role": "tool",
"content": result,
"tool_call_id": call.id,
"name": call.function.name
})
chat_completion_2 = client.chat.completions.create(messages=messages,
model=model,
tools=tools,
stream=False)
print("\n\n")
print(chat_completion_2)