
Signed-off-by: reidliu41 <reid201711@gmail.com> Co-authored-by: reidliu41 <reid201711@gmail.com>
126 lines
4.2 KiB
Python
126 lines
4.2 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
"""Example for starting a Gradio OpenAI Chatbot Webserver
|
|
Start vLLM API server:
|
|
vllm serve meta-llama/Llama-2-7b-chat-hf
|
|
|
|
Start Gradio OpenAI Chatbot Webserver:
|
|
python examples/online_serving/gradio_openai_chatbot_webserver.py \
|
|
-m meta-llama/Llama-2-7b-chat-hf
|
|
|
|
Note that `pip install --upgrade gradio` is needed to run this example.
|
|
More details: https://github.com/gradio-app/gradio
|
|
|
|
If your antivirus software blocks the download of frpc for gradio,
|
|
you can install it manually by following these steps:
|
|
|
|
1. Download this file: https://cdn-media.huggingface.co/frpc-gradio-0.3/frpc_linux_amd64
|
|
2. Rename the downloaded file to: frpc_linux_amd64_v0.3
|
|
3. Move the file to this location: /home/user/.cache/huggingface/gradio/frpc
|
|
"""
|
|
import argparse
|
|
|
|
import gradio as gr
|
|
from openai import OpenAI
|
|
|
|
|
|
def format_history_to_openai(history):
|
|
history_openai_format = [{
|
|
"role": "system",
|
|
"content": "You are a great AI assistant."
|
|
}]
|
|
for human, assistant in history:
|
|
history_openai_format.append({"role": "user", "content": human})
|
|
history_openai_format.append({
|
|
"role": "assistant",
|
|
"content": assistant
|
|
})
|
|
return history_openai_format
|
|
|
|
|
|
def predict(message, history, client, model_name, temp, stop_token_ids):
|
|
# Format history to OpenAI chat format
|
|
history_openai_format = format_history_to_openai(history)
|
|
history_openai_format.append({"role": "user", "content": message})
|
|
|
|
# Send request to OpenAI API (vLLM server)
|
|
stream = client.chat.completions.create(
|
|
model=model_name,
|
|
messages=history_openai_format,
|
|
temperature=temp,
|
|
stream=True,
|
|
extra_body={
|
|
'repetition_penalty':
|
|
1,
|
|
'stop_token_ids':
|
|
[int(id.strip())
|
|
for id in stop_token_ids.split(',')] if stop_token_ids else []
|
|
})
|
|
|
|
# Collect all chunks and concatenate them into a full message
|
|
full_message = ""
|
|
for chunk in stream:
|
|
full_message += (chunk.choices[0].delta.content or "")
|
|
|
|
# Return the full message as a single response
|
|
return full_message
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(
|
|
description='Chatbot Interface with Customizable Parameters')
|
|
parser.add_argument('--model-url',
|
|
type=str,
|
|
default='http://localhost:8000/v1',
|
|
help='Model URL')
|
|
parser.add_argument('-m',
|
|
'--model',
|
|
type=str,
|
|
required=True,
|
|
help='Model name for the chatbot')
|
|
parser.add_argument('--temp',
|
|
type=float,
|
|
default=0.8,
|
|
help='Temperature for text generation')
|
|
parser.add_argument('--stop-token-ids',
|
|
type=str,
|
|
default='',
|
|
help='Comma-separated stop token IDs')
|
|
parser.add_argument("--host", type=str, default=None)
|
|
parser.add_argument("--port", type=int, default=8001)
|
|
return parser.parse_args()
|
|
|
|
|
|
def build_gradio_interface(client, model_name, temp, stop_token_ids):
|
|
|
|
def chat_predict(message, history):
|
|
return predict(message, history, client, model_name, temp,
|
|
stop_token_ids)
|
|
|
|
return gr.ChatInterface(fn=chat_predict,
|
|
title="Chatbot Interface",
|
|
description="A simple chatbot powered by vLLM")
|
|
|
|
|
|
def main():
|
|
# Parse the arguments
|
|
args = parse_args()
|
|
|
|
# Set OpenAI's API key and API base to use vLLM's API server
|
|
openai_api_key = "EMPTY"
|
|
openai_api_base = args.model_url
|
|
|
|
# Create an OpenAI client
|
|
client = OpenAI(api_key=openai_api_key, base_url=openai_api_base)
|
|
|
|
# Define the Gradio chatbot interface using the predict function
|
|
gradio_interface = build_gradio_interface(client, args.model, args.temp,
|
|
args.stop_token_ids)
|
|
|
|
gradio_interface.queue().launch(server_name=args.host,
|
|
server_port=args.port,
|
|
share=True)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|