vllm/examples/online_serving/gradio_openai_chatbot_webserver.py
Reid 7168920491
[Misc] refactor examples series (#16708)
Signed-off-by: reidliu41 <reid201711@gmail.com>
Co-authored-by: reidliu41 <reid201711@gmail.com>
2025-04-16 10:16:36 +00:00

126 lines
4.2 KiB
Python

# SPDX-License-Identifier: Apache-2.0
"""Example for starting a Gradio OpenAI Chatbot Webserver
Start vLLM API server:
vllm serve meta-llama/Llama-2-7b-chat-hf
Start Gradio OpenAI Chatbot Webserver:
python examples/online_serving/gradio_openai_chatbot_webserver.py \
-m meta-llama/Llama-2-7b-chat-hf
Note that `pip install --upgrade gradio` is needed to run this example.
More details: https://github.com/gradio-app/gradio
If your antivirus software blocks the download of frpc for gradio,
you can install it manually by following these steps:
1. Download this file: https://cdn-media.huggingface.co/frpc-gradio-0.3/frpc_linux_amd64
2. Rename the downloaded file to: frpc_linux_amd64_v0.3
3. Move the file to this location: /home/user/.cache/huggingface/gradio/frpc
"""
import argparse
import gradio as gr
from openai import OpenAI
def format_history_to_openai(history):
history_openai_format = [{
"role": "system",
"content": "You are a great AI assistant."
}]
for human, assistant in history:
history_openai_format.append({"role": "user", "content": human})
history_openai_format.append({
"role": "assistant",
"content": assistant
})
return history_openai_format
def predict(message, history, client, model_name, temp, stop_token_ids):
# Format history to OpenAI chat format
history_openai_format = format_history_to_openai(history)
history_openai_format.append({"role": "user", "content": message})
# Send request to OpenAI API (vLLM server)
stream = client.chat.completions.create(
model=model_name,
messages=history_openai_format,
temperature=temp,
stream=True,
extra_body={
'repetition_penalty':
1,
'stop_token_ids':
[int(id.strip())
for id in stop_token_ids.split(',')] if stop_token_ids else []
})
# Collect all chunks and concatenate them into a full message
full_message = ""
for chunk in stream:
full_message += (chunk.choices[0].delta.content or "")
# Return the full message as a single response
return full_message
def parse_args():
parser = argparse.ArgumentParser(
description='Chatbot Interface with Customizable Parameters')
parser.add_argument('--model-url',
type=str,
default='http://localhost:8000/v1',
help='Model URL')
parser.add_argument('-m',
'--model',
type=str,
required=True,
help='Model name for the chatbot')
parser.add_argument('--temp',
type=float,
default=0.8,
help='Temperature for text generation')
parser.add_argument('--stop-token-ids',
type=str,
default='',
help='Comma-separated stop token IDs')
parser.add_argument("--host", type=str, default=None)
parser.add_argument("--port", type=int, default=8001)
return parser.parse_args()
def build_gradio_interface(client, model_name, temp, stop_token_ids):
def chat_predict(message, history):
return predict(message, history, client, model_name, temp,
stop_token_ids)
return gr.ChatInterface(fn=chat_predict,
title="Chatbot Interface",
description="A simple chatbot powered by vLLM")
def main():
# Parse the arguments
args = parse_args()
# Set OpenAI's API key and API base to use vLLM's API server
openai_api_key = "EMPTY"
openai_api_base = args.model_url
# Create an OpenAI client
client = OpenAI(api_key=openai_api_key, base_url=openai_api_base)
# Define the Gradio chatbot interface using the predict function
gradio_interface = build_gradio_interface(client, args.model, args.temp,
args.stop_token_ids)
gradio_interface.queue().launch(server_name=args.host,
server_port=args.port,
share=True)
if __name__ == "__main__":
main()