
Signed-off-by: reidliu41 <reid201711@gmail.com> Co-authored-by: reidliu41 <reid201711@gmail.com>
62 lines
2.1 KiB
Python
62 lines
2.1 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import os
|
|
|
|
from vllm import LLM, SamplingParams
|
|
|
|
# creates XLA hlo graphs for all the context length buckets.
|
|
os.environ['NEURON_CONTEXT_LENGTH_BUCKETS'] = "128,512,1024,2048"
|
|
# creates XLA hlo graphs for all the token gen buckets.
|
|
os.environ['NEURON_TOKEN_GEN_BUCKETS'] = "128,512,1024,2048"
|
|
# Quantizes neuron model weight to int8 ,
|
|
# The default config for quantization is int8 dtype.
|
|
os.environ['NEURON_QUANT_DTYPE'] = "s8"
|
|
|
|
# Sample prompts.
|
|
prompts = [
|
|
"Hello, my name is",
|
|
"The president of the United States is",
|
|
"The capital of France is",
|
|
"The future of AI is",
|
|
]
|
|
# Create a sampling params object.
|
|
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
|
|
|
|
|
def main():
|
|
# Create an LLM.
|
|
llm = LLM(
|
|
model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
|
max_num_seqs=8,
|
|
# The max_model_len and block_size arguments are required to be same as
|
|
# max sequence length when targeting neuron device.
|
|
# Currently, this is a known limitation in continuous batching support
|
|
# in transformers-neuronx.
|
|
# TODO(liangfu): Support paged-attention in transformers-neuronx.
|
|
max_model_len=2048,
|
|
block_size=2048,
|
|
# ruff: noqa: E501
|
|
# The device can be automatically detected when AWS Neuron SDK is installed.
|
|
# The device argument can be either unspecified for automated detection,
|
|
# or explicitly assigned.
|
|
device="neuron",
|
|
quantization="neuron_quant",
|
|
override_neuron_config={
|
|
"cast_logits_dtype": "bfloat16",
|
|
},
|
|
tensor_parallel_size=2)
|
|
# Generate texts from the prompts. The output is a list of RequestOutput objects
|
|
# that contain the prompt, generated text, and other information.
|
|
outputs = llm.generate(prompts, sampling_params)
|
|
# Print the outputs.
|
|
print("-" * 50)
|
|
for output in outputs:
|
|
prompt = output.prompt
|
|
generated_text = output.outputs[0].text
|
|
print(f"Prompt: {prompt!r}\nGenerated text: {generated_text!r}")
|
|
print("-" * 50)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|