
Signed-off-by: reidliu41 <reid201711@gmail.com> Co-authored-by: reidliu41 <reid201711@gmail.com>
173 lines
5.8 KiB
Python
173 lines
5.8 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
"""
|
|
Usage:
|
|
Single node:
|
|
python examples/offline_inference/data_parallel.py \
|
|
--model="ibm-research/PowerMoE-3b" \
|
|
--dp-size=2 \
|
|
--tp-size=2
|
|
|
|
Multi-node:
|
|
Node 0 (assume the node has ip of 10.99.48.128):
|
|
python examples/offline_inference/data_parallel.py \
|
|
--model="ibm-research/PowerMoE-3b" \
|
|
--dp-size=2 \
|
|
--tp-size=2 \
|
|
--node-size=2 \
|
|
--node-rank=0 \
|
|
--master-addr=10.99.48.128 \
|
|
--master-port=13345
|
|
Node 1:
|
|
python examples/offline_inference/data_parallel.py \
|
|
--model="ibm-research/PowerMoE-3b" \
|
|
--dp-size=2 \
|
|
--tp-size=2 \
|
|
--node-size=2 \
|
|
--node-rank=1 \
|
|
--master-addr=10.99.48.128 \
|
|
--master-port=13345
|
|
"""
|
|
import os
|
|
from time import sleep
|
|
|
|
from vllm import LLM, SamplingParams
|
|
from vllm.utils import get_open_port
|
|
|
|
|
|
def parse_args():
|
|
import argparse
|
|
parser = argparse.ArgumentParser(description="Data Parallel Inference")
|
|
parser.add_argument("--model",
|
|
type=str,
|
|
default="ibm-research/PowerMoE-3b",
|
|
help="Model name or path")
|
|
parser.add_argument("--dp-size",
|
|
type=int,
|
|
default=2,
|
|
help="Data parallel size")
|
|
parser.add_argument("--tp-size",
|
|
type=int,
|
|
default=2,
|
|
help="Tensor parallel size")
|
|
parser.add_argument("--node-size",
|
|
type=int,
|
|
default=1,
|
|
help="Total number of nodes")
|
|
parser.add_argument("--node-rank",
|
|
type=int,
|
|
default=0,
|
|
help="Rank of the current node")
|
|
parser.add_argument("--master-addr",
|
|
type=str,
|
|
default="",
|
|
help="Master node IP address")
|
|
parser.add_argument("--master-port",
|
|
type=int,
|
|
default=0,
|
|
help="Master node port")
|
|
return parser.parse_args()
|
|
|
|
|
|
def main(model, dp_size, local_dp_rank, global_dp_rank, dp_master_ip,
|
|
dp_master_port, GPUs_per_dp_rank):
|
|
os.environ["VLLM_DP_RANK"] = str(global_dp_rank)
|
|
os.environ["VLLM_DP_RANK_LOCAL"] = str(local_dp_rank)
|
|
os.environ["VLLM_DP_SIZE"] = str(dp_size)
|
|
os.environ["VLLM_DP_MASTER_IP"] = dp_master_ip
|
|
os.environ["VLLM_DP_MASTER_PORT"] = str(dp_master_port)
|
|
|
|
# CUDA_VISIBLE_DEVICES for each DP rank is set automatically inside the
|
|
# engine processes.
|
|
|
|
# Sample prompts.
|
|
prompts = [
|
|
"Hello, my name is",
|
|
"The president of the United States is",
|
|
"The capital of France is",
|
|
"The future of AI is",
|
|
] * 100
|
|
|
|
# with DP, each rank should process different prompts.
|
|
# usually all the DP ranks process a full dataset,
|
|
# and each rank processes a different part of the dataset.
|
|
promts_per_rank = len(prompts) // dp_size
|
|
start = global_dp_rank * promts_per_rank
|
|
end = start + promts_per_rank
|
|
prompts = prompts[start:end]
|
|
if len(prompts) == 0:
|
|
# if any rank has no prompts to process,
|
|
# we need to set a placeholder prompt
|
|
prompts = ["Placeholder"]
|
|
print(f"DP rank {global_dp_rank} needs to process {len(prompts)} prompts")
|
|
|
|
# Create a sampling params object.
|
|
# since we are doing data parallel, every rank can have different
|
|
# sampling params. here we set different max_tokens for different
|
|
# ranks for demonstration.
|
|
sampling_params = SamplingParams(temperature=0.8,
|
|
top_p=0.95,
|
|
max_tokens=[16, 20][global_dp_rank % 2])
|
|
|
|
# Create an LLM.
|
|
llm = LLM(model=model,
|
|
tensor_parallel_size=GPUs_per_dp_rank,
|
|
enforce_eager=True,
|
|
enable_expert_parallel=True)
|
|
outputs = llm.generate(prompts, sampling_params)
|
|
# Print the outputs.
|
|
for i, output in enumerate(outputs):
|
|
if i >= 5:
|
|
# print only 5 outputs
|
|
break
|
|
prompt = output.prompt
|
|
generated_text = output.outputs[0].text
|
|
print(f"DP rank {global_dp_rank}, Prompt: {prompt!r}, "
|
|
f"Generated text: {generated_text!r}")
|
|
|
|
# Give engines time to pause their processing loops before exiting.
|
|
sleep(1)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
args = parse_args()
|
|
|
|
dp_size = args.dp_size
|
|
tp_size = args.tp_size
|
|
node_size = args.node_size
|
|
node_rank = args.node_rank
|
|
|
|
if node_size == 1:
|
|
dp_master_ip = "127.0.0.1"
|
|
dp_master_port = get_open_port()
|
|
else:
|
|
dp_master_ip = args.master_addr
|
|
dp_master_port = args.master_port
|
|
|
|
assert dp_size % node_size == 0, "dp_size should be divisible by node_size"
|
|
dp_per_node = dp_size // node_size
|
|
|
|
from multiprocessing import Process
|
|
|
|
procs = []
|
|
for local_dp_rank, global_dp_rank in enumerate(
|
|
range(node_rank * dp_per_node, (node_rank + 1) * dp_per_node)):
|
|
proc = Process(target=main,
|
|
args=(args.model, dp_size, local_dp_rank,
|
|
global_dp_rank, dp_master_ip, dp_master_port,
|
|
tp_size))
|
|
proc.start()
|
|
procs.append(proc)
|
|
exit_code = 0
|
|
for proc in procs:
|
|
proc.join(timeout=300)
|
|
if proc.exitcode is None:
|
|
print(f"Killing process {proc.pid} that "
|
|
f"didn't stop within 5 minutes.")
|
|
proc.kill()
|
|
exit_code = 1
|
|
elif proc.exitcode:
|
|
exit_code = proc.exitcode
|
|
|
|
exit(exit_code)
|