
- **Add SPDX license headers to python source files** - **Check for SPDX headers using pre-commit** commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745 Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:18:24 2025 -0500 Add SPDX license headers to python source files This commit adds SPDX license headers to python source files as recommended to the project by the Linux Foundation. These headers provide a concise way that is both human and machine readable for communicating license information for each source file. It helps avoid any ambiguity about the license of the code and can also be easily used by tools to help manage license compliance. The Linux Foundation runs license scans against the codebase to help ensure we are in compliance with the licenses of the code we use, including dependencies. Having these headers in place helps that tool do its job. More information can be found on the SPDX site: - https://spdx.dev/learn/handling-license-info/ Signed-off-by: Russell Bryant <rbryant@redhat.com> commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:36:32 2025 -0500 Check for SPDX headers using pre-commit Signed-off-by: Russell Bryant <rbryant@redhat.com> --------- Signed-off-by: Russell Bryant <rbryant@redhat.com>
141 lines
4.3 KiB
Python
141 lines
4.3 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
# ruff: noqa
|
|
import json
|
|
import random
|
|
import string
|
|
|
|
from vllm import LLM
|
|
from vllm.sampling_params import SamplingParams
|
|
|
|
# This script is an offline demo for function calling
|
|
#
|
|
# If you want to run a server/client setup, please follow this code:
|
|
#
|
|
# - Server:
|
|
#
|
|
# ```bash
|
|
# vllm serve mistralai/Mistral-7B-Instruct-v0.3 --tokenizer-mode mistral --load-format mistral --config-format mistral
|
|
# ```
|
|
#
|
|
# - Client:
|
|
#
|
|
# ```bash
|
|
# curl --location 'http://<your-node-url>:8000/v1/chat/completions' \
|
|
# --header 'Content-Type: application/json' \
|
|
# --header 'Authorization: Bearer token' \
|
|
# --data '{
|
|
# "model": "mistralai/Mistral-7B-Instruct-v0.3"
|
|
# "messages": [
|
|
# {
|
|
# "role": "user",
|
|
# "content": [
|
|
# {"type" : "text", "text": "Describe this image in detail please."},
|
|
# {"type": "image_url", "image_url": {"url": "https://s3.amazonaws.com/cms.ipressroom.com/338/files/201808/5b894ee1a138352221103195_A680%7Ejogging-edit/A680%7Ejogging-edit_hero.jpg"}},
|
|
# {"type" : "text", "text": "and this one as well. Answer in French."},
|
|
# {"type": "image_url", "image_url": {"url": "https://www.wolframcloud.com/obj/resourcesystem/images/a0e/a0ee3983-46c6-4c92-b85d-059044639928/6af8cfb971db031b.png"}}
|
|
# ]
|
|
# }
|
|
# ]
|
|
# }'
|
|
# ```
|
|
#
|
|
# Usage:
|
|
# python demo.py simple
|
|
# python demo.py advanced
|
|
|
|
model_name = "mistralai/Mistral-7B-Instruct-v0.3"
|
|
# or switch to "mistralai/Mistral-Nemo-Instruct-2407"
|
|
# or "mistralai/Mistral-Large-Instruct-2407"
|
|
# or any other mistral model with function calling ability
|
|
|
|
sampling_params = SamplingParams(max_tokens=8192, temperature=0.0)
|
|
llm = LLM(model=model_name,
|
|
tokenizer_mode="mistral",
|
|
config_format="mistral",
|
|
load_format="mistral")
|
|
|
|
|
|
def generate_random_id(length=9):
|
|
characters = string.ascii_letters + string.digits
|
|
random_id = ''.join(random.choice(characters) for _ in range(length))
|
|
return random_id
|
|
|
|
|
|
# simulate an API that can be called
|
|
def get_current_weather(city: str, state: str, unit: 'str'):
|
|
return (f"The weather in {city}, {state} is 85 degrees {unit}. It is "
|
|
"partly cloudly, with highs in the 90's.")
|
|
|
|
|
|
tool_funtions = {"get_current_weather": get_current_weather}
|
|
|
|
tools = [{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "get_current_weather",
|
|
"description": "Get the current weather in a given location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"city": {
|
|
"type":
|
|
"string",
|
|
"description":
|
|
"The city to find the weather for, e.g. 'San Francisco'"
|
|
},
|
|
"state": {
|
|
"type":
|
|
"string",
|
|
"description":
|
|
"the two-letter abbreviation for the state that the city is"
|
|
" in, e.g. 'CA' which would mean 'California'"
|
|
},
|
|
"unit": {
|
|
"type": "string",
|
|
"description": "The unit to fetch the temperature in",
|
|
"enum": ["celsius", "fahrenheit"]
|
|
}
|
|
},
|
|
"required": ["city", "state", "unit"]
|
|
}
|
|
}
|
|
}]
|
|
|
|
messages = [{
|
|
"role":
|
|
"user",
|
|
"content":
|
|
"Can you tell me what the temperate will be in Dallas, in fahrenheit?"
|
|
}]
|
|
|
|
outputs = llm.chat(messages, sampling_params=sampling_params, tools=tools)
|
|
output = outputs[0].outputs[0].text.strip()
|
|
|
|
# append the assistant message
|
|
messages.append({
|
|
"role": "assistant",
|
|
"content": output,
|
|
})
|
|
|
|
# let's now actually parse and execute the model's output simulating an API call by using the
|
|
# above defined function
|
|
tool_calls = json.loads(output)
|
|
tool_answers = [
|
|
tool_funtions[call['name']](**call['arguments']) for call in tool_calls
|
|
]
|
|
|
|
# append the answer as a tool message and let the LLM give you an answer
|
|
messages.append({
|
|
"role": "tool",
|
|
"content": "\n\n".join(tool_answers),
|
|
"tool_call_id": generate_random_id(),
|
|
})
|
|
|
|
outputs = llm.chat(messages, sampling_params, tools=tools)
|
|
|
|
print(outputs[0].outputs[0].text.strip())
|
|
# yields
|
|
# 'The weather in Dallas, TX is 85 degrees fahrenheit. '
|
|
# 'It is partly cloudly, with highs in the 90's.'
|