vllm/csrc/sparse/cutlass/sparse_scaled_mm_c3x.cuh

568 lines
23 KiB
Plaintext

#pragma once
// clang-format will break include orders
// clang-format off
#include <cudaTypedefs.h>
#include <torch/all.h>
#include <ATen/cuda/CUDAContext.h>
#include "cutlass/cutlass.h"
#include "cutlass/gemm/device/gemm_universal_adapter.h"
#include "cutlass/epilogue/collective/collective_builder.hpp"
#include "cutlass/gemm/collective/collective_builder.hpp"
#include "cutlass/transform/device/transform_universal_adapter.hpp"
#include "cutlass/transform/kernel/sparse_gemm_compressor.hpp"
#include "core/math.hpp"
#include "cutlass_extensions/cute_utils.cuh"
#include "cutlass_extensions/epilogue/scaled_mm_epilogues_c3x.hpp"
#include "cutlass_extensions/common.hpp"
#include "cutlass_extensions/torch_utils.hpp"
// clang-format on
using namespace cute;
/*
This file defines 2:4 sparse GEMM operations using the CUTLASS 3.x API,
for NVIDIA GPUs with sm90a (Hopper) or later.
*/
namespace {
// A wrapper for the GEMM kernel that is used to guard against compilation on
// architectures that will never use the kernel. The purpose of this is to
// reduce the size of the compiled binary.
// __CUDA_ARCH__ is not defined in host code, so this lets us smuggle the ifdef
// into code that will be executed on the device where it is defined.
template <typename Kernel>
struct enable_sm90_or_later : Kernel {
template <typename... Args>
CUTLASS_DEVICE void operator()(Args&&... args) {
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 900
Kernel::operator()(std::forward<Args>(args)...);
#endif
}
};
using GemmUniversalMode = cutlass::gemm::GemmUniversalMode;
/*
* cutlass_sparse_3x_gemm defines a 2:4 sparse GEMM kernel via CUTLASS
* for SM90 Hopper systems.
*/
template <typename ElementAB_, typename ElementD_,
template <typename, typename, typename> typename Epilogue_,
typename TileShape, typename ClusterShape, typename KernelSchedule,
typename EpilogueSchedule>
struct cutlass_sparse_3x_gemm {
using ElementAB = ElementAB_;
using ElementD = ElementD_;
using ElementAcc =
typename std::conditional<std::is_same_v<ElementAB, int8_t>, int32_t,
float>::type;
using Epilogue = Epilogue_<ElementAcc, ElementD, TileShape>;
using ElementC = void;
using LayoutC = cutlass::layout::RowMajor;
using LayoutC_Transpose =
typename cutlass::layout::LayoutTranspose<LayoutC>::type;
using EVTCompute = typename Epilogue::EVTCompute;
// These are the minimum alignments needed for the kernels to compile
static constexpr int AlignmentAB =
128 / cutlass::sizeof_bits<ElementAB>::value;
static constexpr int AlignmentCD = 4;
using CollectiveEpilogue =
typename cutlass::epilogue::collective::CollectiveBuilder<
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, TileShape,
ClusterShape, cutlass::epilogue::collective::EpilogueTileAuto,
ElementAcc, float, ElementC, LayoutC_Transpose, AlignmentCD, ElementD,
LayoutC_Transpose, AlignmentCD, EpilogueSchedule,
EVTCompute>::CollectiveOp;
static constexpr size_t CEStorageSize =
sizeof(typename CollectiveEpilogue::SharedStorage);
using Stages = typename cutlass::gemm::collective::StageCountAutoCarveout<
static_cast<int>(CEStorageSize)>;
// clang-format off
using CollectiveMainloop =
typename cutlass::gemm::collective::CollectiveBuilder<
cutlass::arch::Sm90, cutlass::arch::OpClassSparseTensorOp,
ElementAB, cutlass::layout::RowMajor, AlignmentAB,
ElementAB, cutlass::layout::ColumnMajor, AlignmentAB,
ElementAcc, TileShape, ClusterShape,
Stages,
KernelSchedule>::CollectiveOp;
// clang-format on
using KernelType = enable_sm90_or_later<cutlass::gemm::kernel::GemmUniversal<
cute::Shape<int, int, int, int>, CollectiveMainloop, CollectiveEpilogue,
cutlass::gemm::PersistentScheduler>>;
struct GemmKernel : public KernelType {};
// Sparse compressor definitions
using SparseConfig = typename GemmKernel::CollectiveMainloop::SparseConfig;
using LayoutTagA = cutlass::layout::RowMajor;
using CompressorUtility =
cutlass::transform::kernel::StructuredSparseCompressorUtility<
typename GemmKernel::ProblemShape, ElementAB, LayoutTagA,
SparseConfig>;
using CompressorKernel =
cutlass::transform::kernel::StructuredSparseCompressor<
typename GemmKernel::ProblemShape, ElementAB, LayoutTagA,
SparseConfig, cutlass::arch::Sm90>;
using Compressor =
cutlass::transform::device::TransformUniversalAdapter<CompressorKernel>;
};
/*
* This class defines kernel to compress a 2:4 sparse matrix.
* The particular format is defined by the Gemm template parameter,
* which is a cutlass_sparse_3x_gemm.
*/
using CompressorResult = std::tuple<torch::Tensor, torch::Tensor>;
/// Make A structured sparse by replacing elements with 0 and compress it
template <typename Gemm>
CompressorResult cutlass_sparse_compress(torch::Tensor const& a) {
// Checks for conformality
TORCH_CHECK(a.dtype() == torch::kInt8 || a.dtype() == torch::kFloat8_e4m3fn ||
a.dtype() == torch::kFloat16 || a.dtype() == torch::kBFloat16);
TORCH_CHECK(a.dim() == 2)
// Check for strides and alignment
TORCH_CHECK(a.stride(0) % 4 == 0) // Required for semi-structured sparsity
TORCH_CHECK(a.stride(1) == 1)
using GemmKernel = typename Gemm::KernelType;
using ElementA = typename Gemm::ElementAB;
using ElementE = typename GemmKernel::CollectiveMainloop::ElementE;
int m = a.size(0);
int k = a.size(1);
using ProblemShape = typename GemmKernel::ProblemShape;
ProblemShape prob_shape{m, 1, k, 1};
int64_t lda = a.stride(0);
using StrideA = Stride<int64_t, Int<1>, int64_t>;
StrideA a_stride{lda, Int<1>{}, 0};
using CompressorUtility = typename Gemm::CompressorUtility;
CompressorUtility compressor_utility(prob_shape, a_stride);
// Allocate buffers for the metadata E and the compressed matrix A
int ME = compressor_utility.get_metadata_m_physical();
int KE = compressor_utility.get_metadata_k_physical();
int MC = compressor_utility.get_tensorA_m_physical();
int KC = compressor_utility.get_tensorA_k_physical();
auto const a_meta_options =
torch::TensorOptions().dtype(torch::kUInt8).device(a.device());
auto const a_nzs_options =
torch::TensorOptions().dtype(a.dtype()).device(a.device());
auto a_meta = torch::zeros({ME, KE}, a_meta_options);
auto a_nzs = torch::zeros({MC, KC}, a_nzs_options);
auto a_ptr = static_cast<ElementA*>(a.data_ptr());
auto a_nzs_ptr = static_cast<ElementA*>(a_nzs.data_ptr());
auto a_meta_ptr = static_cast<ElementE*>(a_meta.data_ptr());
cutlass::KernelHardwareInfo hw_info;
hw_info.device_id = a.device().index();
hw_info.sm_count =
cutlass::KernelHardwareInfo::query_device_multiprocessor_count(
hw_info.device_id);
using Compressor = typename Gemm::Compressor;
typename Compressor::Arguments arguments{
prob_shape, {a_ptr, a_stride, a_nzs_ptr, a_meta_ptr}, {hw_info}};
Compressor compressor_op;
size_t workspace_size = Compressor::get_workspace_size(arguments);
auto const workspace_options =
torch::TensorOptions().dtype(torch::kUInt8).device(a.device());
auto workspace = torch::empty(workspace_size, workspace_options);
CUTLASS_CHECK(compressor_op.can_implement(arguments));
CUTLASS_CHECK(compressor_op.initialize(arguments, workspace.data_ptr()));
CUTLASS_CHECK(compressor_op.run());
CUDA_CHECK(cudaDeviceSynchronize());
return {a_meta, a_nzs};
}
template <typename Gemm, typename... EpilogueArgs>
void cutlass_sparse_gemm_caller(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& bt_nzs,
torch::Tensor const& bt_meta,
EpilogueArgs&&... epilogue_params) {
using ElementAB = typename Gemm::ElementAB;
using ElementD = typename Gemm::ElementD;
// Interface stride expected from the argument a (will get transposed)
// We compute C^T = B^T * A^T, but we assume B is transposed before
// compression and hence the bt_* naming
using LayoutB = typename Gemm::GemmKernel::CollectiveMainloop::LayoutA;
using LayoutE = typename Gemm::GemmKernel::CollectiveMainloop::LayoutE;
// M, N, K after transposition
int32_t m = out.size(1);
int32_t n = out.size(0);
int32_t k = a.size(1);
int64_t lda = a.stride(0);
int64_t ldc = out.stride(0);
using StrideA = Stride<int64_t, Int<1>, int64_t>;
using StrideC = Stride<Int<1>, int64_t, int64_t>;
StrideA a_stride{lda, Int<1>{}, Int<0>{}};
StrideC c_stride{Int<1>{}, ldc, Int<0>{}};
using GemmKernel = typename Gemm::GemmKernel;
typename GemmKernel::ProblemShape prob_shape{m, n, k, 1};
using ElementE = typename GemmKernel::CollectiveMainloop::ElementE;
using SparseConfig = typename GemmKernel::CollectiveMainloop::SparseConfig;
LayoutB b_layout = SparseConfig::fill_layoutA(prob_shape);
LayoutE e_layout = SparseConfig::fill_layoutE(prob_shape);
auto a_ptr = static_cast<ElementAB*>(a.data_ptr());
auto b_ptr = static_cast<ElementAB*>(bt_nzs.data_ptr());
auto e_ptr = static_cast<ElementE*>(bt_meta.data_ptr());
typename GemmKernel::MainloopArguments mainloop_args{
b_ptr, b_layout, a_ptr, a_stride, e_ptr, e_layout};
auto c_ptr = static_cast<ElementD*>(out.data_ptr());
typename GemmKernel::EpilogueArguments epilogue_args{
Gemm::Epilogue::prepare_args(
std::forward<EpilogueArgs>(epilogue_params)...),
c_ptr, c_stride, c_ptr, c_stride};
typename GemmKernel::Arguments args{cutlass::gemm::GemmUniversalMode::kGemm,
prob_shape, mainloop_args, epilogue_args};
// Launch the CUTLASS GEMM kernel.
using GemmOp = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
GemmOp gemm_op;
CUTLASS_CHECK(gemm_op.can_implement(args));
size_t workspace_size = gemm_op.get_workspace_size(args);
auto const workspace_options =
torch::TensorOptions().dtype(torch::kUInt8).device(a.device());
auto workspace = torch::empty(workspace_size, workspace_options);
auto stream = at::cuda::getCurrentCUDAStream(a.get_device());
cutlass::Status status = gemm_op.run(args, workspace.data_ptr(), stream);
CUTLASS_CHECK(status);
}
//////////////////////////////////////////////////
// Gemm Configs are defined below
//////////////////////////////////////////////////
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_config_default {};
template <typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_config_default<half_t, OutType, Epilogue> {
using KernelSchedule = cutlass::gemm::KernelTmaWarpSpecialized;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_128, _128, _128>;
using ClusterShape = Shape<_1, _1, _1>;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<half_t, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_config_default<cutlass::bfloat16_t, OutType, Epilogue> {
using KernelSchedule = cutlass::gemm::KernelTmaWarpSpecialized;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_128, _128, _128>;
using ClusterShape = Shape<_1, _1, _1>;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<cutlass::bfloat16_t, OutType, Epilogue, TileShape,
ClusterShape, KernelSchedule, EpilogueSchedule>;
};
//////////////////////// Cherry-Picking Kernels ////////////////////////
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_1 {
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule = cutlass::gemm::KernelTmaWarpSpecializedFP8FastAccum;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_64, _64, _256>;
using ClusterShape = Shape<_8, _1, _1>;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_2 {
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule =
cutlass::gemm::KernelTmaWarpSpecializedCooperativeFP8FastAccum;
using EpilogueSchedule =
typename cutlass::epilogue::TmaWarpSpecializedCooperative;
using TileShape = Shape<_128, _64, _256>;
using ClusterShape = Shape<_8, _1, _1>;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_3 {
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule = cutlass::gemm::KernelTmaWarpSpecializedFP8FastAccum;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_64, _64, _256>;
using ClusterShape = Shape<_1, _2, _1>;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_4 {
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule = cutlass::gemm::KernelTmaWarpSpecializedFP8FastAccum;
using EpilogueSchedule =
typename cutlass::epilogue::TmaWarpSpecializedCooperative;
using TileShape = Shape<_64, _128, _256>;
using ClusterShape = Shape<_8, _1, _1>;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_5 {
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule =
cutlass::gemm::KernelTmaWarpSpecializedPingpongFP8FastAccum;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_128, _128, _256>;
using ClusterShape = Shape<_8, _1, _1>;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_6 {
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule = cutlass::gemm::KernelTmaWarpSpecializedFP8FastAccum;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_64, _128, _256>;
using ClusterShape = Shape<_1, _2, _1>;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_7 {
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule =
cutlass::gemm::KernelTmaWarpSpecializedCooperativeFP8FastAccum;
using EpilogueSchedule =
typename cutlass::epilogue::TmaWarpSpecializedCooperative;
using TileShape = Shape<_128, _128, _256>;
using ClusterShape = Shape<_1, _1, _1>;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_8 {
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule =
cutlass::gemm::KernelTmaWarpSpecializedCooperativeFP8FastAccum;
using EpilogueSchedule =
typename cutlass::epilogue::TmaWarpSpecializedCooperative;
using TileShape = Shape<_128, _256, _128>;
using ClusterShape = Shape<_8, _1, _1>;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
////////////////////////////////////////////////////////////////////////
template <typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_config_default<cutlass::float_e4m3_t, OutType, Epilogue> {
// M in (128, inf)
using KernelSchedule = cutlass::gemm::KernelTmaWarpSpecializedFP8FastAccum;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_128, _128, _128>;
using ClusterShape = Shape<_1, _2, _1>;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<cutlass::float_e4m3_t, OutType, Epilogue,
TileShape, ClusterShape, KernelSchedule,
EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_M64 {
// M in [1, 64]
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule = cutlass::gemm::KernelTmaWarpSpecializedFP8FastAccum;
using EpilogueSchedule =
typename cutlass::epilogue::TmaWarpSpecializedCooperative;
using TileShape = Shape<_64, _64, _256>;
using ClusterShape = Shape<_1, _1, _1>;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_M128 {
// M in (64, 128]
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule =
cutlass::gemm::KernelTmaWarpSpecializedPingpongFP8FastAccum;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_64, _128, _256>;
using ClusterShape = Shape<_1, _1, _1>;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_M256 {
// M in (128, 256]
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule =
cutlass::gemm::KernelTmaWarpSpecializedCooperativeFP8FastAccum;
using EpilogueSchedule =
typename cutlass::epilogue::TmaWarpSpecializedCooperative;
using TileShape = Shape<_128, _128, _256>;
using ClusterShape = Shape<_1, _1, _1>;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_M512 {
// M in (256, ]
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule =
cutlass::gemm::KernelTmaWarpSpecializedCooperativeFP8FastAccum;
using EpilogueSchedule =
typename cutlass::epilogue::TmaWarpSpecializedCooperative;
using TileShape = Shape<_128, _128, _256>;
using ClusterShape = Shape<_1, _1, _1>;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_config_default<int8_t, OutType, Epilogue> {
// For M > 128 and any N
using KernelSchedule =
typename cutlass::gemm::KernelTmaWarpSpecializedPingpong;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_128, _128, _128>;
using ClusterShape = Shape<_2, _1, _1>;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<int8_t, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_int8_config_M128 {
// For M in (64, 128] and any N
static_assert(std::is_same<InType, int8_t>());
using KernelSchedule =
typename cutlass::gemm::KernelTmaWarpSpecializedPingpong;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_64, _128, _128>;
using ClusterShape = Shape<_2, _1, _1>;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_int8_config_M64 {
// For M in (32, 64] and any N
static_assert(std::is_same<InType, int8_t>());
using KernelSchedule = typename cutlass::gemm::KernelTmaWarpSpecialized;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_64, _64, _256>;
using ClusterShape = Shape<_1, _1, _1>;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_int8_config_M32_NBig {
// For M in [1, 32] and N >= 8192
static_assert(std::is_same<InType, int8_t>());
using KernelSchedule = typename cutlass::gemm::KernelTmaWarpSpecialized;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_64, _128, _256>;
using ClusterShape = Shape<_1, _4, _1>;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_int8_config_M32_NSmall {
// For M in [1, 32] and N < 8192
static_assert(std::is_same<InType, int8_t>());
using KernelSchedule = typename cutlass::gemm::KernelTmaWarpSpecialized;
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
using TileShape = Shape<_64, _64, _256>;
using ClusterShape = Shape<_1, _8, _1>;
using Cutlass3xGemm =
cutlass_sparse_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
};
} // namespace