vllm/csrc/sparse/cutlass/sparse_compressor_c3x.cuh
Tyler Michael Smith c1e37bf71b
[Kernel][Bugfix] Refactor and Fix CUTLASS 2:4 Sparse Kernels (#13198)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-02-14 00:01:14 +00:00

91 lines
3.2 KiB
Plaintext

#pragma once
// clang-format will break include orders
// clang-format off
#include <cudaTypedefs.h>
#if defined CUDA_VERSION && CUDA_VERSION >= 12020
#include "sparse_scaled_mm_c3x.cuh"
#include "cutlass/numeric_conversion.h"
#include "cutlass/transform/device/transform_universal_adapter.hpp"
#include "cutlass/transform/kernel/sparse_gemm_compressor.hpp"
#include "cutlass/epilogue/collective/default_epilogue.hpp"
// clang-format on
using namespace cute;
using namespace vllm;
using CompressorResult = std::tuple<torch::Tensor, torch::Tensor>;
/// Make A structured sparse by replacing elements with 0 and compress it
template <typename Gemm>
CompressorResult cutlass_sparse_compress(torch::Tensor const& a) {
// Checks for conformality
TORCH_CHECK(a.dtype() == torch::kInt8 || a.dtype() == torch::kFloat8_e4m3fn ||
a.dtype() == torch::kFloat16 || a.dtype() == torch::kBFloat16);
TORCH_CHECK(a.dim() == 2)
// Check for strides and alignment
TORCH_CHECK(a.stride(0) % 4 == 0) // Required for semi-structured sparsity
TORCH_CHECK(a.stride(1) == 1)
using GemmKernel = typename Gemm::KernelType;
using ElementA = typename Gemm::ElementAB;
using ElementE = typename GemmKernel::CollectiveMainloop::ElementE;
int m = a.size(0);
int k = a.size(1);
using ProblemShape = typename GemmKernel::ProblemShape;
ProblemShape prob_shape{m, 1, k, 1};
int64_t lda = a.stride(0);
using StrideA = Stride<int64_t, Int<1>, int64_t>;
StrideA a_stride{lda, Int<1>{}, 0};
using CompressorUtility = typename Gemm::CompressorUtility;
CompressorUtility compressor_utility(prob_shape, a_stride);
// Allocate buffers for the metadata E and the compressed matrix A
int ME = compressor_utility.get_metadata_m_physical();
int KE = compressor_utility.get_metadata_k_physical();
int MC = compressor_utility.get_tensorA_m_physical();
int KC = compressor_utility.get_tensorA_k_physical();
auto const a_meta_options =
torch::TensorOptions().dtype(torch::kUInt8).device(a.device());
auto const a_nzs_options =
torch::TensorOptions().dtype(a.dtype()).device(a.device());
auto a_meta = torch::zeros({ME, KE}, a_meta_options);
auto a_nzs = torch::zeros({MC, KC}, a_nzs_options);
auto a_ptr = static_cast<ElementA*>(a.data_ptr());
auto a_nzs_ptr = static_cast<ElementA*>(a_nzs.data_ptr());
auto a_meta_ptr = static_cast<ElementE*>(a_meta.data_ptr());
cutlass::KernelHardwareInfo hw_info;
hw_info.device_id = a.device().index();
hw_info.sm_count =
cutlass::KernelHardwareInfo::query_device_multiprocessor_count(
hw_info.device_id);
using Compressor = typename Gemm::Compressor;
typename Compressor::Arguments arguments{
prob_shape, {a_ptr, a_stride, a_nzs_ptr, a_meta_ptr}, {hw_info}};
Compressor compressor_op;
size_t workspace_size = Compressor::get_workspace_size(arguments);
auto const workspace_options =
torch::TensorOptions().dtype(torch::kUInt8).device(a.device());
auto workspace = torch::empty(workspace_size, workspace_options);
CUTLASS_CHECK(compressor_op.can_implement(arguments));
CUTLASS_CHECK(compressor_op.initialize(arguments, workspace.data_ptr()));
CUTLASS_CHECK(compressor_op.run());
CUDA_CHECK(cudaDeviceSynchronize());
return {a_meta, a_nzs};
}
#endif