vllm/csrc/cpu/quant.cpp
Dilip Gowda Bhagavan ada19210a3
Adding cpu inference with VXE ISA for s390x architecture (#12613)
Signed-off-by: Dilip Gowda Bhagavan <dilip.bhagavan@ibm.com>
Signed-off-by: Rishika Kedia <rishika.kedia@in.ibm.com>
Co-authored-by: Rishika Kedia <rishika.kedia@in.ibm.com>
2025-03-06 08:40:53 -08:00

614 lines
24 KiB
C++

#include "cpu_types.hpp"
#include "dnnl_helper.hpp"
namespace {
template <typename scalar_t>
struct KernelVecType {
using load_vec_type = void;
using azp_adj_load_vec_type = void;
using cvt_vec_type = void;
};
template <>
struct KernelVecType<float> {
using load_vec_type = vec_op::FP32Vec16;
using azp_adj_load_vec_type = vec_op::INT32Vec16;
using cvt_vec_type = vec_op::FP32Vec16;
};
template <>
struct KernelVecType<c10::BFloat16> {
using load_vec_type = vec_op::BF16Vec16;
using azp_adj_load_vec_type = vec_op::INT32Vec16;
using cvt_vec_type = vec_op::FP32Vec16;
};
template <>
struct KernelVecType<c10::Half> {
#if defined(__powerpc64__) || defined(__s390x__)
// Power architecture-specific vector type
using load_vec_type = vec_op::FP32Vec16;
#else
// Fallback for other architectures
using load_vec_type = vec_op::FP16Vec16;
#endif
using azp_adj_load_vec_type = vec_op::INT32Vec16;
using cvt_vec_type = vec_op::FP32Vec16;
};
#ifdef __AVX512F__
template <bool AZP, typename scalar_t>
void static_scaled_int8_quant_impl(const scalar_t* input, int8_t* output,
const float* scale, const int32_t* azp,
const int num_tokens,
const int hidden_size) {
using load_vec_t = typename KernelVecType<scalar_t>::load_vec_type;
using cvt_vec_t = typename KernelVecType<scalar_t>::cvt_vec_type;
constexpr int vec_elem_num = load_vec_t::VEC_ELEM_NUM;
constexpr float i8_min =
static_cast<float>(std::numeric_limits<int8_t>::min());
constexpr float i8_max =
static_cast<float>(std::numeric_limits<int8_t>::max());
const cvt_vec_t inv_scale(1.0 / *scale);
const cvt_vec_t i8_min_vec(i8_min);
const cvt_vec_t i8_max_vec(i8_max);
cvt_vec_t zp_vec;
if constexpr (AZP) {
zp_vec = cvt_vec_t(static_cast<float>(*azp));
}
#pragma omp parallel for
for (int i = 0; i < num_tokens; ++i) {
int j = 0;
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
load_vec_t elems(input + i * hidden_size + j);
cvt_vec_t elems_fp32(elems);
elems_fp32 = elems_fp32 * inv_scale;
if constexpr (AZP) {
elems_fp32 = elems_fp32 + zp_vec;
}
elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec);
vec_op::INT8Vec16 elems_int8(elems_fp32);
elems_int8.save(output + i * hidden_size + j);
}
load_vec_t elems(input + i * hidden_size + j);
cvt_vec_t elems_fp32(elems);
elems_fp32 = elems_fp32 * inv_scale;
if constexpr (AZP) {
elems_fp32 = elems_fp32 + zp_vec;
}
elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec);
vec_op::INT8Vec16 elems_int8(elems_fp32);
elems_int8.save(output + i * hidden_size + j, hidden_size - j);
}
}
template <bool AZP, typename scalar_t>
void dynamic_scaled_int8_quant_impl(const scalar_t* input, int8_t* output,
float* scale, int32_t* azp,
const int num_tokens,
const int hidden_size) {
using load_vec_t = typename KernelVecType<scalar_t>::load_vec_type;
using cvt_vec_t = typename KernelVecType<scalar_t>::cvt_vec_type;
constexpr int vec_elem_num = load_vec_t::VEC_ELEM_NUM;
constexpr float i8_min =
static_cast<float>(std::numeric_limits<int8_t>::min());
constexpr float i8_max =
static_cast<float>(std::numeric_limits<int8_t>::max());
const cvt_vec_t i8_min_vec(i8_min);
const cvt_vec_t i8_max_vec(i8_max);
#pragma omp parallel for
for (int i = 0; i < num_tokens; ++i) {
cvt_vec_t max_value(std::numeric_limits<float>::lowest());
cvt_vec_t min_value(std::numeric_limits<float>::max());
{
int j = 0;
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
load_vec_t elems(input + i * hidden_size + j);
cvt_vec_t elems_fp32(elems);
if constexpr (AZP) {
max_value = max_value.max(elems_fp32);
min_value = min_value.min(elems_fp32);
} else {
max_value = max_value.max(elems_fp32.abs());
}
}
load_vec_t elems(input + i * hidden_size + j);
cvt_vec_t elems_fp32(elems);
if (j + vec_elem_num == hidden_size) {
if constexpr (AZP) {
max_value = max_value.max(elems_fp32);
min_value = min_value.min(elems_fp32);
} else {
max_value = max_value.max(elems_fp32.abs());
}
} else {
if constexpr (AZP) {
max_value = max_value.max(elems_fp32, hidden_size - j);
min_value = min_value.min(elems_fp32, hidden_size - j);
} else {
max_value = max_value.max(elems_fp32.abs(), hidden_size - j);
}
}
}
float scale_val, azp_val;
if constexpr (AZP) {
float max_scalar = max_value.reduce_max();
float min_scalar = min_value.reduce_min();
scale_val = (max_scalar - min_scalar) / 255.0f;
azp_val = std::nearbyint(-128.0f - min_scalar / scale_val);
azp[i] = static_cast<int32_t>(azp_val);
scale[i] = scale_val;
} else {
scale_val = max_value.reduce_max() / 127.0f;
scale[i] = scale_val;
}
const cvt_vec_t inv_scale(1.0 / scale_val);
const cvt_vec_t azp_vec(azp_val);
{
int j = 0;
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
load_vec_t elems(input + i * hidden_size + j);
cvt_vec_t elems_fp32(elems);
elems_fp32 = (elems_fp32 * inv_scale);
if constexpr (AZP) {
elems_fp32 = elems_fp32 + azp_vec;
}
elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec);
vec_op::INT8Vec16 elems_int8(elems_fp32);
elems_int8.save(output + i * hidden_size + j);
}
load_vec_t elems(input + i * hidden_size + j);
cvt_vec_t elems_fp32(elems);
elems_fp32 = (elems_fp32 * inv_scale);
if constexpr (AZP) {
elems_fp32 = elems_fp32 + azp_vec;
}
elems_fp32 = elems_fp32.clamp(i8_min_vec, i8_max_vec);
vec_op::INT8Vec16 elems_int8(elems_fp32);
elems_int8.save(output + i * hidden_size + j, hidden_size - j);
}
}
}
template <bool PerChannel, typename scalar_t>
void static_quant_epilogue(const float* input, scalar_t* output,
const float a_scale, const float* b_scale,
const int32_t* azp_with_adj, const int num_tokens,
const int hidden_size) {
CPU_KERNEL_GUARD_IN(dynamic_output_scale_impl)
using load_vec_t = typename KernelVecType<scalar_t>::load_vec_type;
using azp_adj_load_vec_t =
typename KernelVecType<scalar_t>::azp_adj_load_vec_type;
using cvt_vec_t = typename KernelVecType<scalar_t>::cvt_vec_type;
constexpr int vec_elem_num = load_vec_t::VEC_ELEM_NUM;
#pragma omp parallel for
for (int i = 0; i < num_tokens; ++i) {
cvt_vec_t a_scale_vec(a_scale);
cvt_vec_t b_scale_vec(*b_scale);
cvt_vec_t scale_vec = a_scale_vec * b_scale_vec;
int j = 0;
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
cvt_vec_t elems_fp32(input + i * hidden_size + j);
azp_adj_load_vec_t azp_adj_vec(azp_with_adj + j);
cvt_vec_t azp_adj_fp32(azp_adj_vec);
if constexpr (PerChannel) {
b_scale_vec = cvt_vec_t(b_scale + j);
scale_vec = b_scale_vec * a_scale_vec;
}
elems_fp32 = elems_fp32 - scale_vec * azp_adj_fp32;
load_vec_t elems_out(elems_fp32);
elems_out.save(output + i * hidden_size + j);
}
cvt_vec_t elems_fp32(input + i * hidden_size + j);
azp_adj_load_vec_t azp_adj_vec(azp_with_adj + j);
cvt_vec_t azp_adj_fp32(azp_adj_vec);
if constexpr (PerChannel) {
b_scale_vec = cvt_vec_t(b_scale + j);
scale_vec = b_scale_vec * a_scale_vec;
}
elems_fp32 = elems_fp32 - scale_vec * azp_adj_fp32;
load_vec_t elems_out(elems_fp32);
elems_out.save(output + i * hidden_size + j, hidden_size - j);
}
}
template <bool AZP, bool PerChannel, bool Bias, typename scalar_t>
void dynamic_quant_epilogue(const float* input, scalar_t* output,
const float* a_scale, const float* b_scale,
const int32_t* azp, const int32_t* azp_adj,
const scalar_t* bias, const int num_tokens,
const int hidden_size) {
CPU_KERNEL_GUARD_IN(dynamic_quant_epilogue)
using load_vec_t = typename KernelVecType<scalar_t>::load_vec_type;
using azp_adj_load_vec_t =
typename KernelVecType<scalar_t>::azp_adj_load_vec_type;
using cvt_vec_t = typename KernelVecType<scalar_t>::cvt_vec_type;
constexpr int vec_elem_num = load_vec_t::VEC_ELEM_NUM;
#pragma omp parallel for
for (int i = 0; i < num_tokens; ++i) {
int j = 0;
cvt_vec_t token_scale_vec(a_scale[i]);
cvt_vec_t token_zp_scale_vec;
if constexpr (AZP) {
float zp_scale_val = a_scale[i] * static_cast<float>(azp[i]);
if constexpr (!PerChannel) {
zp_scale_val *= *b_scale;
}
token_zp_scale_vec = cvt_vec_t(zp_scale_val);
}
for (; j < hidden_size - vec_elem_num; j += vec_elem_num) {
cvt_vec_t elems_fp32(input + i * hidden_size + j);
elems_fp32 = elems_fp32 * token_scale_vec;
if constexpr (AZP) {
azp_adj_load_vec_t azp_adj_vec(azp_adj + j);
cvt_vec_t azp_adj_fp32(azp_adj_vec);
azp_adj_fp32 = azp_adj_fp32 * token_zp_scale_vec;
if constexpr (PerChannel) {
cvt_vec_t b_scale_vec(b_scale + j);
azp_adj_fp32 = azp_adj_fp32 * b_scale_vec;
}
elems_fp32 = elems_fp32 - azp_adj_fp32;
}
if constexpr (Bias) {
load_vec_t bias_vec(bias + j);
cvt_vec_t bias_vec_fp32(bias_vec);
elems_fp32 = elems_fp32 + bias_vec_fp32;
}
load_vec_t elems_out(elems_fp32);
elems_out.save(output + i * hidden_size + j);
}
cvt_vec_t elems_fp32(input + i * hidden_size + j);
elems_fp32 = elems_fp32 * token_scale_vec;
if constexpr (AZP) {
azp_adj_load_vec_t azp_adj_vec(azp_adj + j);
cvt_vec_t azp_adj_fp32(azp_adj_vec);
azp_adj_fp32 = azp_adj_fp32 * token_zp_scale_vec;
if constexpr (PerChannel) {
cvt_vec_t b_scale_vec(b_scale + j);
azp_adj_fp32 = azp_adj_fp32 * b_scale_vec;
}
elems_fp32 = elems_fp32 - azp_adj_fp32;
}
if constexpr (Bias) {
load_vec_t bias_vec(bias + j);
cvt_vec_t bias_vec_fp32(bias_vec);
elems_fp32 = elems_fp32 + bias_vec_fp32;
}
load_vec_t elems_out(elems_fp32);
elems_out.save(output + i * hidden_size + j, hidden_size - j);
}
}
#else
template <typename scalar_t>
void static_scaled_int8_quant_impl(const scalar_t* input, int8_t* output,
const float* scale, const int32_t* azp,
const int num_tokens,
const int hidden_size) {
TORCH_CHECK(false, "static_scaled_int8_quant_impl requires AVX512 support.")
}
template <typename scalar_t>
void dynamic_scaled_int8_quant_impl(const scalar_t* input, int8_t* output,
float* scale, int32_t* azp,
const int num_tokens,
const int hidden_size) {
TORCH_CHECK(false, "dynamic_scaled_int8_quant_impl requires AVX512 support.")
}
template <bool PerChannel, typename scalar_t>
void static_quant_epilogue(const float* input, scalar_t* output,
const float a_scale, const float* b_scale,
const int32_t* azp_with_adj, const int num_tokens,
const int hidden_size) {
TORCH_CHECK(false, "static_quant_epilogue requires AVX512 support.")
}
template <typename scalar_t>
void dynamic_quant_epilogue(const float* input, scalar_t* output,
const float* a_scale, const float* b_scale,
const int32_t* azp, const int32_t* azp_with_adj,
const scalar_t* bias, const int num_tokens,
const int hidden_size) {
TORCH_CHECK(false, "dynamic_quant_epilogue requires AVX512 support.")
}
#endif
} // namespace
void int8_scaled_mm(torch::Tensor& c, // [M, OC], row-major
const torch::Tensor& a, // [M, IC], row-major
const torch::Tensor& b, // [IC, OC], column-major
const torch::Tensor& a_scales, // [1] or [M]
const torch::Tensor& b_scales, // [1] or [OC]
const std::optional<torch::Tensor>& bias // [OC]
) {
CPU_KERNEL_GUARD_IN(cutlass_scaled_mm)
// Checks for conformality
TORCH_CHECK(a.dtype() == torch::kInt8 && b.dtype() == torch::kInt8,
"int8_scaled_mm only supports INT8 inputs.")
TORCH_CHECK(a.dim() == 2 && b.dim() == 2 && c.dim() == 2);
TORCH_CHECK(c.size(0) == a.size(0) && a.size(1) == b.size(0) &&
b.size(1) == c.size(1));
TORCH_CHECK(a_scales.numel() == 1 || a_scales.numel() == a.size(0));
TORCH_CHECK(b_scales.numel() == 1 || b_scales.numel() == b.size(1));
// Check for strides and alignment
TORCH_CHECK(a.stride(1) == 1 && c.stride(1) == 1); // Row-major
TORCH_CHECK(b.stride(0) == 1); // Column-major
TORCH_CHECK(c.stride(0) % 16 == 0 &&
b.stride(1) % 16 == 0); // 16 Byte Alignment
TORCH_CHECK(a_scales.is_contiguous() && b_scales.is_contiguous());
if (bias) {
TORCH_CHECK(bias->numel() == b.size(1) && bias->is_contiguous() &&
bias->dim() == 1);
}
VLLM_DISPATCH_FLOATING_TYPES(c.scalar_type(), "int8_scaled_mm", [&] {
if (a_scales.numel() != 1) {
// per-token
// Note: oneDNN doesn't support per-token activation quantization
// Ideally we want to fuse the GEMM and the scale procedure with oneDNN
// JIT, the intermediate data is cached in registers or L1. But for now
// the oneDNN GEMM code generation only supports two quantization
// patterns: per-tensor or per-output-channel of weight.
// So we have to apply the per-token scale with a 'epilogue'. In C=s_a *
// s_b * (A@B) + bias, the C_inter = s_b * (A@B) is computed by oneDNN
// GEMM, then the per-token scale (and bias) is applied with the epilogue
// C=s_a * C_inter + bias.
torch::Tensor tmp_fp32_out =
torch::empty_like(c, ::at::ScalarType::Float);
// Compute C_inter=s_b * (A@B)
DNNLPrimitiveHelper<true>::gemm_s8s8_jit<float, void>(
a.data_ptr<int8_t>(), b.data_ptr<int8_t>(),
tmp_fp32_out.data_ptr<float>(), nullptr, a.size(0), b.size(1),
a.size(1), nullptr, b_scales.data_ptr<float>(), 0, b_scales.numel());
if (bias.has_value()) {
// Compute C=s_a * C_inter + bias
dynamic_quant_epilogue<false, true, true>(
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
a_scales.data_ptr<float>(), nullptr, nullptr, nullptr,
bias->data_ptr<scalar_t>(), c.size(0), c.size(1));
} else {
// Compute C=s_a * C_inter
dynamic_quant_epilogue<false, true, false, scalar_t>(
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
a_scales.data_ptr<float>(), nullptr, nullptr, nullptr, nullptr,
c.size(0), c.size(1));
}
} else {
// per-tensor
if (bias.has_value()) {
// Compute C=s_a * s_b * (A@B) + bias
DNNLPrimitiveHelper<false>::gemm_s8s8_jit(
a.data_ptr<int8_t>(), b.data_ptr<int8_t>(), c.data_ptr<scalar_t>(),
bias->data_ptr<scalar_t>(), a.size(0), b.size(1), a.size(1),
a_scales.data_ptr<float>(), b_scales.data_ptr<float>(),
a_scales.numel(), b_scales.numel());
} else {
// Compute C=s_a * s_b * (A@B)
DNNLPrimitiveHelper<false>::gemm_s8s8_jit<scalar_t, void>(
a.data_ptr<int8_t>(), b.data_ptr<int8_t>(), c.data_ptr<scalar_t>(),
nullptr, a.size(0), b.size(1), a.size(1),
a_scales.data_ptr<float>(), b_scales.data_ptr<float>(),
a_scales.numel(), b_scales.numel());
}
}
});
}
void int8_scaled_mm_azp(torch::Tensor& c, // [M, OC], row-major
const torch::Tensor& a, // [M, IC], row-major
const torch::Tensor& b, // [IC, OC], column-major
const torch::Tensor& a_scales, // [1] or [M]
const torch::Tensor& b_scales, // [1] or [OC]
const torch::Tensor& azp_adj, // [OC]
const std::optional<torch::Tensor>& azp, // [1] or [M]
const std::optional<torch::Tensor>& bias // [OC]
) {
CPU_KERNEL_GUARD_IN(cutlass_scaled_mm_azp)
// Checks for conformality
TORCH_CHECK(a.dtype() == torch::kInt8 && b.dtype() == torch::kInt8,
"int8_scaled_mm_azp only supports INT8 inputs.")
TORCH_CHECK(a.dim() == 2 && b.dim() == 2 && c.dim() == 2);
TORCH_CHECK(c.size(0) == a.size(0) && a.size(1) == b.size(0) &&
b.size(1) == c.size(1));
TORCH_CHECK(a_scales.numel() == 1 || a_scales.numel() == a.size(0));
TORCH_CHECK(b_scales.numel() == 1 || b_scales.numel() == b.size(1));
// Check for strides and alignment
TORCH_CHECK(a.stride(1) == 1 && c.stride(1) == 1); // Row-major
TORCH_CHECK(b.stride(0) == 1); // Column-major
TORCH_CHECK(c.stride(0) % 16 == 0 &&
b.stride(1) % 16 == 0); // 16 Byte Alignment
TORCH_CHECK(a_scales.is_contiguous() && b_scales.is_contiguous());
if (bias) {
TORCH_CHECK(bias->numel() == b.size(1) && bias->is_contiguous());
}
if (azp) {
TORCH_CHECK(azp->numel() == a.size(0) && azp->is_contiguous());
}
TORCH_CHECK(azp_adj.numel() == b.size(1) && azp_adj.is_contiguous());
// azp & bias types
TORCH_CHECK(azp_adj.dtype() == torch::kInt32);
TORCH_CHECK(!azp || azp->dtype() == torch::kInt32);
TORCH_CHECK(!bias || bias->dtype() == c.dtype(),
"currently bias dtype must match output dtype ", c.dtype());
VLLM_DISPATCH_FLOATING_TYPES(c.scalar_type(), "int8_scaled_mm_azp", [&] {
torch::Tensor tmp_fp32_out = torch::empty_like(c, ::at::ScalarType::Float);
if (a_scales.numel() != 1) {
// per-token
// Note: oneDNN doesn't support per-token activation quantization
// Compute C_inter=s_b * (A@B)
DNNLPrimitiveHelper<true>::gemm_s8s8_jit<float, void>(
a.data_ptr<int8_t>(), b.data_ptr<int8_t>(),
tmp_fp32_out.data_ptr<float>(), nullptr, a.size(0), b.size(1),
a.size(1), nullptr, b_scales.data_ptr<float>(), 0, b_scales.numel());
if (bias.has_value()) {
// Compute C=s_a * C_inter - s_a * s_b * azp * azp_adj + bias
if (b_scales.numel() != 1) {
// Per-Channel
dynamic_quant_epilogue<true, true, true>(
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
a_scales.data_ptr<float>(), b_scales.data_ptr<float>(),
azp->data_ptr<int32_t>(), azp_adj.data_ptr<int32_t>(),
bias->data_ptr<scalar_t>(), c.size(0), c.size(1));
} else {
// Per-Tensor
dynamic_quant_epilogue<true, false, true>(
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
a_scales.data_ptr<float>(), b_scales.data_ptr<float>(),
azp->data_ptr<int32_t>(), azp_adj.data_ptr<int32_t>(),
bias->data_ptr<scalar_t>(), c.size(0), c.size(1));
}
} else {
// Compute C=s_a * C_inter - s_a * s_b * azp * azp_adj
if (b_scales.numel() != 1) {
// Per-Channel
dynamic_quant_epilogue<true, true, false, scalar_t>(
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
a_scales.data_ptr<float>(), b_scales.data_ptr<float>(),
azp->data_ptr<int32_t>(), azp_adj.data_ptr<int32_t>(), nullptr,
c.size(0), c.size(1));
} else {
// Per-Tensor
dynamic_quant_epilogue<true, false, false, scalar_t>(
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
a_scales.data_ptr<float>(), b_scales.data_ptr<float>(),
azp->data_ptr<int32_t>(), azp_adj.data_ptr<int32_t>(), nullptr,
c.size(0), c.size(1));
}
}
} else {
// per-tensor
if (bias.has_value()) {
// Compute C_inter=s_a * s_b * (A@B) + bias
DNNLPrimitiveHelper<false>::gemm_s8s8_jit(
a.data_ptr<int8_t>(), b.data_ptr<int8_t>(),
tmp_fp32_out.data_ptr<float>(), bias->data_ptr<scalar_t>(),
a.size(0), b.size(1), a.size(1), a_scales.data_ptr<float>(),
b_scales.data_ptr<float>(), a_scales.numel(), b_scales.numel());
} else {
// Compute C_inter=s_a * s_b * (A@B)
DNNLPrimitiveHelper<false>::gemm_s8s8_jit<float, void>(
a.data_ptr<int8_t>(), b.data_ptr<int8_t>(),
tmp_fp32_out.data_ptr<float>(), nullptr, a.size(0), b.size(1),
a.size(1), a_scales.data_ptr<float>(), b_scales.data_ptr<float>(),
a_scales.numel(), b_scales.numel());
}
// Compute C=C_inter - s_a * s_b * azp_adj
if (b_scales.numel() != 1) {
// Per-Channel
static_quant_epilogue<true>(
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
*a_scales.data_ptr<float>(), b_scales.data_ptr<float>(),
azp_adj.data_ptr<int32_t>(), a.size(0), b.size(1));
} else {
// Per-Tensor
static_quant_epilogue<false>(
tmp_fp32_out.data_ptr<float>(), c.data_ptr<scalar_t>(),
*a_scales.data_ptr<float>(), b_scales.data_ptr<float>(),
azp_adj.data_ptr<int32_t>(), a.size(0), b.size(1));
}
}
});
}
// static-per-tensor quantization.
void static_scaled_int8_quant(torch::Tensor& out, // [..., hidden_size]
const torch::Tensor& input, // [..., hidden_size]
const torch::Tensor& scale,
std::optional<torch::Tensor> const& azp) {
CPU_KERNEL_GUARD_IN(static_scaled_int8_quant)
TORCH_CHECK(input.is_contiguous());
TORCH_CHECK(out.is_contiguous());
TORCH_CHECK(scale.numel() == 1);
TORCH_CHECK(!azp.has_value() || azp->numel() == 1);
const int hidden_size = input.size(-1);
const int num_tokens = input.numel() / hidden_size;
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(), "static_scaled_int8_quant_impl", [&] {
if (azp.has_value()) {
static_scaled_int8_quant_impl<true>(
input.data_ptr<scalar_t>(), out.data_ptr<int8_t>(),
scale.data_ptr<float>(), azp->data_ptr<int32_t>(), num_tokens,
hidden_size);
} else {
static_scaled_int8_quant_impl<false>(
input.data_ptr<scalar_t>(), out.data_ptr<int8_t>(),
scale.data_ptr<float>(), nullptr, num_tokens, hidden_size);
}
});
}
// dynamic-per-token quantization.
void dynamic_scaled_int8_quant(
torch::Tensor& out, // [..., hidden_size]
const torch::Tensor& input, // [..., hidden_size]
torch::Tensor& scale, // [..., 1]
std::optional<torch::Tensor> const& azp) {
CPU_KERNEL_GUARD_IN(dynamic_scaled_int8_quant)
TORCH_CHECK(input.is_contiguous());
TORCH_CHECK(out.is_contiguous());
int const hidden_size = input.size(-1);
int const num_tokens = input.numel() / hidden_size;
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(), "dynamic_scaled_int8_quant_impl", [&] {
if (azp.has_value()) {
dynamic_scaled_int8_quant_impl<true>(
input.data_ptr<scalar_t>(), out.data_ptr<int8_t>(),
scale.data_ptr<float>(), azp->data_ptr<int32_t>(), num_tokens,
hidden_size);
} else {
dynamic_scaled_int8_quant_impl<false>(
input.data_ptr<scalar_t>(), out.data_ptr<int8_t>(),
scale.data_ptr<float>(), nullptr, num_tokens, hidden_size);
}
});
}