
Signed-off-by: Dilip Gowda Bhagavan <dilip.bhagavan@ibm.com> Signed-off-by: Rishika Kedia <rishika.kedia@in.ibm.com> Co-authored-by: Rishika Kedia <rishika.kedia@in.ibm.com>
798 lines
33 KiB
C++
798 lines
33 KiB
C++
#include "cpu_types.hpp"
|
|
|
|
namespace {
|
|
|
|
template <typename scalar_t>
|
|
struct KernelVecType {
|
|
using q_load_vec_type = void;
|
|
using q_vec_type = void;
|
|
using k_load_vec_type = void;
|
|
using k_vec_type = void;
|
|
using qk_acc_vec_type = void;
|
|
using v_load_vec_type = void;
|
|
};
|
|
|
|
template <>
|
|
struct KernelVecType<float> {
|
|
using q_load_vec_type = vec_op::FP32Vec4;
|
|
using q_vec_type = vec_op::FP32Vec16;
|
|
using k_load_vec_type = vec_op::FP32Vec16;
|
|
using k_vec_type = vec_op::FP32Vec16;
|
|
using qk_acc_vec_type = vec_op::FP32Vec16;
|
|
using v_load_vec_type = vec_op::FP32Vec16;
|
|
};
|
|
|
|
template <>
|
|
struct KernelVecType<c10::Half> {
|
|
#if defined(__powerpc64__) || defined(__s390x__)
|
|
// Power and s390x architecture-specific vector types
|
|
using q_load_vec_type = vec_op::FP32Vec8;
|
|
using k_load_vec_type = vec_op::FP32Vec16;
|
|
using v_load_vec_type = vec_op::FP32Vec16;
|
|
#else
|
|
// Fallback for other architectures, including x86
|
|
using q_load_vec_type = vec_op::FP16Vec8;
|
|
using k_load_vec_type = vec_op::FP16Vec16;
|
|
using v_load_vec_type = vec_op::FP16Vec16;
|
|
#endif
|
|
using q_vec_type = vec_op::FP32Vec16;
|
|
using k_vec_type = vec_op::FP32Vec16;
|
|
using qk_acc_vec_type = vec_op::FP32Vec16;
|
|
};
|
|
|
|
#ifdef __AVX512BF16__
|
|
template <>
|
|
struct KernelVecType<c10::BFloat16> {
|
|
using q_load_vec_type = vec_op::BF16Vec8;
|
|
using q_vec_type = vec_op::BF16Vec32;
|
|
using k_load_vec_type = vec_op::BF16Vec32;
|
|
using k_vec_type = vec_op::BF16Vec32;
|
|
using qk_acc_vec_type = vec_op::FP32Vec16;
|
|
using v_load_vec_type = vec_op::BF16Vec16;
|
|
};
|
|
#else
|
|
#ifdef __aarch64__
|
|
#ifndef ARM_BF16_SUPPORT
|
|
// pass
|
|
#else
|
|
template <>
|
|
struct KernelVecType<c10::BFloat16> {
|
|
using q_load_vec_type = vec_op::BF16Vec8;
|
|
using q_vec_type = vec_op::FP32Vec16;
|
|
using k_load_vec_type = vec_op::BF16Vec16;
|
|
using k_vec_type = vec_op::FP32Vec16;
|
|
using qk_acc_vec_type = vec_op::FP32Vec16;
|
|
using v_load_vec_type = vec_op::BF16Vec16;
|
|
};
|
|
#endif
|
|
#else
|
|
template <>
|
|
struct KernelVecType<c10::BFloat16> {
|
|
using q_load_vec_type = vec_op::BF16Vec8;
|
|
using q_vec_type = vec_op::FP32Vec16;
|
|
using k_load_vec_type = vec_op::BF16Vec16;
|
|
using k_vec_type = vec_op::FP32Vec16;
|
|
using qk_acc_vec_type = vec_op::FP32Vec16;
|
|
using v_load_vec_type = vec_op::BF16Vec16;
|
|
};
|
|
#endif
|
|
#endif
|
|
|
|
template <typename T>
|
|
FORCE_INLINE std::pair<T, T> reduceSoftmax(T* data, const int size,
|
|
const int capacity) {
|
|
T max = data[0];
|
|
for (int i = 1; i < size; ++i) {
|
|
max = max >= data[i] ? max : data[i];
|
|
}
|
|
|
|
T sum = 0;
|
|
for (int i = 0; i < size; ++i) {
|
|
data[i] = std::exp(data[i] - max);
|
|
sum += data[i];
|
|
}
|
|
|
|
int i = 0;
|
|
for (; i < size; ++i) {
|
|
data[i] /= sum;
|
|
}
|
|
|
|
for (; i < capacity; ++i) {
|
|
data[i] = 0;
|
|
}
|
|
|
|
return {max, sum};
|
|
}
|
|
|
|
template <typename T>
|
|
FORCE_INLINE std::pair<T, T> reduceSoftmaxAlibi(T* data, const int size,
|
|
const int capacity,
|
|
const float alibi_slope,
|
|
const int start_index,
|
|
const int seq_len) {
|
|
data[0] += alibi_slope * (start_index - seq_len + 1);
|
|
T max = data[0];
|
|
for (int i = 1; i < size; ++i) {
|
|
T qk = data[i] + alibi_slope * (start_index + i - seq_len + 1);
|
|
data[i] = qk;
|
|
max = max >= qk ? max : qk;
|
|
}
|
|
|
|
T sum = 0;
|
|
for (int i = 0; i < size; ++i) {
|
|
data[i] = std::exp(data[i] - max);
|
|
sum += data[i];
|
|
}
|
|
|
|
int i = 0;
|
|
for (; i < size; ++i) {
|
|
data[i] /= sum;
|
|
}
|
|
|
|
for (; i < capacity; ++i) {
|
|
data[i] = 0;
|
|
}
|
|
|
|
return {max, sum};
|
|
}
|
|
|
|
template <typename T>
|
|
FORCE_INLINE void reducePartitonSoftmax(const T* max_data, T* sum_data,
|
|
const int size) {
|
|
T max = max_data[0];
|
|
for (int i = 1; i < size; ++i) {
|
|
max = max >= max_data[i] ? max : max_data[i];
|
|
}
|
|
|
|
T rescaled_sum = 0;
|
|
for (int i = 0; i < size; ++i) {
|
|
T rescale_factor = std::exp(max_data[i] - max);
|
|
rescaled_sum += rescale_factor * sum_data[i];
|
|
sum_data[i] *= rescale_factor;
|
|
}
|
|
for (int i = 0; i < size; ++i) {
|
|
sum_data[i] /= rescaled_sum + 1e-8;
|
|
}
|
|
}
|
|
|
|
template <typename scalar_t, int HEAD_SIZE, int BLOCK_SIZE, int x>
|
|
struct reduceQKBlockKernel {
|
|
using q_load_vec_type = typename KernelVecType<scalar_t>::q_load_vec_type;
|
|
using q_vec_type = typename KernelVecType<scalar_t>::q_vec_type;
|
|
using k_load_vec_type = typename KernelVecType<scalar_t>::k_load_vec_type;
|
|
using k_vec_type = typename KernelVecType<scalar_t>::k_vec_type;
|
|
using qk_acc_vec_type = typename KernelVecType<scalar_t>::qk_acc_vec_type;
|
|
|
|
constexpr static int TOKEN_PER_GROUP = k_load_vec_type::get_elem_num() / x;
|
|
constexpr static int MAX_GROUP_NUM = 16 / TOKEN_PER_GROUP;
|
|
constexpr static int UNROLL_GROUP_NUM = MAX_GROUP_NUM / 4;
|
|
|
|
static_assert(MAX_GROUP_NUM == 8 || MAX_GROUP_NUM == 4);
|
|
static_assert(k_load_vec_type::get_elem_num() % x == 0);
|
|
static_assert(q_load_vec_type::get_elem_num() * sizeof(scalar_t) == 16);
|
|
|
|
FORCE_INLINE static void call(const scalar_t* __restrict__ q,
|
|
const scalar_t* __restrict__ k_block,
|
|
float* __restrict__ logits, float scale,
|
|
const int token_num) {
|
|
const int group_num = (token_num + TOKEN_PER_GROUP - 1) / TOKEN_PER_GROUP;
|
|
|
|
qk_acc_vec_type group_accums[MAX_GROUP_NUM];
|
|
if (token_num == BLOCK_SIZE) {
|
|
for (int q_offset = 0; q_offset < HEAD_SIZE;
|
|
q_offset += x, k_block += x * BLOCK_SIZE) {
|
|
q_load_vec_type q_load_group_vec(q + q_offset);
|
|
q_vec_type q_group_vec(q_load_group_vec);
|
|
|
|
vec_op::unroll_loop<int, MAX_GROUP_NUM>(
|
|
[k_block, &q_group_vec, &group_accums](int token_group_idx) {
|
|
k_load_vec_type k_load_group_vec(k_block + token_group_idx * x *
|
|
TOKEN_PER_GROUP);
|
|
k_vec_type k_group_vec(k_load_group_vec);
|
|
vec_op::fma(group_accums[token_group_idx], q_group_vec,
|
|
k_group_vec);
|
|
vec_op::prefetch(k_block + x * BLOCK_SIZE +
|
|
token_group_idx * x * TOKEN_PER_GROUP);
|
|
});
|
|
}
|
|
} else {
|
|
for (int q_offset = 0; q_offset < HEAD_SIZE;
|
|
q_offset += x, k_block += x * BLOCK_SIZE) {
|
|
q_load_vec_type q_load_group_vec(q + q_offset);
|
|
q_vec_type q_group_vec(q_load_group_vec);
|
|
for (int token_group_start = 0; token_group_start < group_num;
|
|
token_group_start += UNROLL_GROUP_NUM) {
|
|
vec_op::unroll_loop<int, UNROLL_GROUP_NUM>(
|
|
[token_group_start, k_block, &q_group_vec,
|
|
&group_accums](int token_group_idx) {
|
|
token_group_idx += token_group_start;
|
|
k_load_vec_type k_load_group_vec(k_block + token_group_idx * x *
|
|
TOKEN_PER_GROUP);
|
|
k_vec_type k_group_vec(k_load_group_vec);
|
|
vec_op::fma(group_accums[token_group_idx], q_group_vec,
|
|
k_group_vec);
|
|
vec_op::prefetch(k_block + x * BLOCK_SIZE +
|
|
token_group_idx * x * TOKEN_PER_GROUP);
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int token_group_idx = 0; token_group_idx < group_num;
|
|
++token_group_idx) {
|
|
vec_op::unroll_loop<int, TOKEN_PER_GROUP>(
|
|
[&group_accums, logits, scale, token_group_idx](int token_idx) {
|
|
float dot_v =
|
|
group_accums[token_group_idx]
|
|
.template reduce_sub_sum<qk_acc_vec_type::get_elem_num() /
|
|
TOKEN_PER_GROUP>(token_idx);
|
|
logits[token_group_idx * TOKEN_PER_GROUP + token_idx] =
|
|
dot_v * scale;
|
|
});
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename scalar_t, int HEAD_SIZE, int BLOCK_SIZE,
|
|
int HEAD_PARTITION_SIZE, typename acc_t>
|
|
FORCE_INLINE void reduceValueBlock(const float* prob, const scalar_t* v_block,
|
|
acc_t&& acc) {
|
|
using v_load_vec_type = typename KernelVecType<scalar_t>::v_load_vec_type;
|
|
constexpr int ELEM_NUM = v_load_vec_type::get_elem_num();
|
|
static_assert(BLOCK_SIZE == ELEM_NUM);
|
|
vec_op::FP32Vec16 prob_vec(prob);
|
|
|
|
vec_op::unroll_loop<int, HEAD_PARTITION_SIZE>([&](int head_elem_idx) {
|
|
v_load_vec_type v_vec(v_block + BLOCK_SIZE * head_elem_idx);
|
|
vec_op::FP32Vec16 fp32_v_vec(v_vec);
|
|
acc[head_elem_idx] = acc[head_elem_idx] + prob_vec * fp32_v_vec;
|
|
});
|
|
}
|
|
}; // namespace
|
|
|
|
// Paged attention v1
|
|
namespace {
|
|
template <typename scalar_t, int HEAD_SIZE, int BLOCK_SIZE>
|
|
struct paged_attention_v1_impl {
|
|
static void call(
|
|
scalar_t* __restrict__ out, // [num_seqs, num_heads, head_size]
|
|
const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_size]
|
|
const scalar_t* __restrict__ k_cache, // [num_blocks, num_kv_heads,
|
|
// head_size/x, block_size, x]
|
|
const scalar_t* __restrict__ v_cache, // [num_blocks, num_kv_heads,
|
|
// head_size, block_size]
|
|
const int num_kv_heads, const float scale,
|
|
const int* __restrict__ block_tables, // [num_seqs,
|
|
// max_num_blocks_per_seq]
|
|
const int* __restrict__ seq_lens, // [num_seqs]
|
|
const int max_num_blocks_per_seq,
|
|
const float* __restrict__ alibi_slopes, // [num_heads]
|
|
const int q_stride, const int kv_block_stride, const int kv_head_stride,
|
|
const int num_seqs, const int num_heads) {
|
|
constexpr int x = 16 / sizeof(scalar_t);
|
|
const int num_queries_per_kv = num_heads / num_kv_heads;
|
|
|
|
static_assert(BLOCK_SIZE == 16);
|
|
|
|
int max_seq_len = max_num_blocks_per_seq * BLOCK_SIZE;
|
|
int max_seq_len_padded = (max_seq_len + 15) & 0xFFFFFFF0;
|
|
TORCH_CHECK((max_seq_len_padded * sizeof(float)) % 64 == 0);
|
|
|
|
const int parallel_work_item_num = omp_get_max_threads();
|
|
|
|
size_t logits_bytes =
|
|
parallel_work_item_num * max_seq_len_padded * sizeof(float);
|
|
float* logits = (float*)std::aligned_alloc(
|
|
64, logits_bytes); // Cacheline alignment for each context token.
|
|
// [parallel_work_item_num, max_seq_len_padded]
|
|
|
|
#pragma omp parallel for collapse(2) schedule(dynamic, 1)
|
|
for (int seq_idx = 0; seq_idx < num_seqs; ++seq_idx) {
|
|
for (int head_idx = 0; head_idx < num_heads; ++head_idx) {
|
|
int seq_len = seq_lens[seq_idx];
|
|
const int* seq_block_table =
|
|
block_tables + max_num_blocks_per_seq * seq_idx;
|
|
const int block_num = (seq_len + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
|
const int64_t kv_head_idx = head_idx / num_queries_per_kv;
|
|
const scalar_t* __restrict__ q_vec_ptr =
|
|
q + seq_idx * q_stride + head_idx * HEAD_SIZE;
|
|
const int last_block_token_num = seq_len - (block_num - 1) * BLOCK_SIZE;
|
|
float* __restrict__ thread_block_logits =
|
|
logits + omp_get_thread_num() * max_seq_len_padded;
|
|
|
|
// Compute logits
|
|
for (int block_idx = 0; block_idx < block_num; ++block_idx) {
|
|
const int64_t physical_block_idx = seq_block_table[block_idx];
|
|
const scalar_t* __restrict__ k_block_cache_ptr =
|
|
k_cache + physical_block_idx * kv_block_stride +
|
|
kv_head_idx * kv_head_stride;
|
|
float* __restrict__ head_block_logits =
|
|
thread_block_logits + block_idx * BLOCK_SIZE;
|
|
|
|
reduceQKBlockKernel<scalar_t, HEAD_SIZE, BLOCK_SIZE, x>::call(
|
|
q_vec_ptr, k_block_cache_ptr, head_block_logits, scale,
|
|
block_idx == block_num - 1 ? last_block_token_num : BLOCK_SIZE);
|
|
}
|
|
|
|
// Compute softmax
|
|
if (alibi_slopes) {
|
|
reduceSoftmaxAlibi(thread_block_logits, seq_len,
|
|
block_num * BLOCK_SIZE, alibi_slopes[head_idx], 0,
|
|
seq_len);
|
|
} else {
|
|
reduceSoftmax(thread_block_logits, seq_len, block_num * BLOCK_SIZE);
|
|
}
|
|
|
|
// Compute value
|
|
constexpr int head_elem_num_per_partition = 16;
|
|
constexpr int head_partition_num =
|
|
HEAD_SIZE / head_elem_num_per_partition;
|
|
for (int head_part_idx = 0; head_part_idx < head_partition_num;
|
|
++head_part_idx) {
|
|
vec_op::FP32Vec16 accums[head_elem_num_per_partition];
|
|
scalar_t* __restrict__ out_ptr =
|
|
out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE +
|
|
head_part_idx * head_elem_num_per_partition;
|
|
for (int block_idx = 0; block_idx < block_num; ++block_idx) {
|
|
const int64_t physical_block_idx = seq_block_table[block_idx];
|
|
const float* __restrict__ prob_vec_ptr =
|
|
thread_block_logits + block_idx * BLOCK_SIZE;
|
|
const scalar_t* __restrict__ v_block_cache_ptr =
|
|
v_cache + physical_block_idx * kv_block_stride +
|
|
kv_head_idx * kv_head_stride +
|
|
BLOCK_SIZE * head_part_idx * head_elem_num_per_partition;
|
|
reduceValueBlock<scalar_t, HEAD_SIZE, BLOCK_SIZE,
|
|
head_elem_num_per_partition>(
|
|
prob_vec_ptr, v_block_cache_ptr, accums);
|
|
|
|
if (block_idx != block_num - 1) {
|
|
const int64_t next_physical_block_idx =
|
|
seq_block_table[block_idx + 1];
|
|
const scalar_t* __restrict__ next_v_block_cache_ptr =
|
|
v_cache + next_physical_block_idx * kv_block_stride +
|
|
kv_head_idx * kv_head_stride +
|
|
BLOCK_SIZE * head_part_idx * head_elem_num_per_partition;
|
|
vec_op::unroll_loop<int, head_elem_num_per_partition>(
|
|
[&](int head_elem_idx) {
|
|
if (head_elem_idx % 2 == 0) {
|
|
vec_op::prefetch(next_v_block_cache_ptr +
|
|
BLOCK_SIZE * head_elem_idx);
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
vec_op::unroll_loop<int, head_elem_num_per_partition>(
|
|
[&](int head_elem_idx) {
|
|
float value = accums[head_elem_idx].reduce_sum();
|
|
vec_op::storeFP32(value, out_ptr + head_elem_idx);
|
|
});
|
|
}
|
|
}
|
|
}
|
|
std::free(logits);
|
|
}
|
|
};
|
|
|
|
#define LAUNCH_V1_ATTENTION_KERNEL(T, HEAD_SIZE, BLOCK_SIZE) \
|
|
paged_attention_v1_impl<T, HEAD_SIZE, BLOCK_SIZE>::call( \
|
|
out_ptr, query_ptr, key_cache_ptr, value_cache_ptr, num_kv_heads, scale, \
|
|
block_tables_ptr, seq_lens_ptr, max_num_blocks_per_seq, \
|
|
alibi_slopes_ptr, q_stride, kv_block_stride, kv_head_stride, num_seqs, \
|
|
num_heads);
|
|
|
|
template <typename T, int BLOCK_SIZE>
|
|
void paged_attention_v1_impl_launcher(
|
|
torch::Tensor& out, torch::Tensor& query, torch::Tensor& key_cache,
|
|
torch::Tensor& value_cache, int num_kv_heads, float scale,
|
|
torch::Tensor& block_tables, torch::Tensor& seq_lens, int max_seq_len,
|
|
const std::optional<torch::Tensor>& alibi_slopes) {
|
|
int num_seqs = query.size(0);
|
|
int num_heads = query.size(1);
|
|
int head_size = query.size(2);
|
|
int max_num_blocks_per_seq = block_tables.size(1);
|
|
int q_stride = query.stride(0);
|
|
int kv_block_stride = key_cache.stride(0);
|
|
int kv_head_stride = key_cache.stride(1);
|
|
|
|
// NOTE: alibi_slopes is optional.
|
|
const float* alibi_slopes_ptr =
|
|
alibi_slopes
|
|
? reinterpret_cast<const float*>(alibi_slopes.value().data_ptr())
|
|
: nullptr;
|
|
|
|
T* out_ptr = reinterpret_cast<T*>(out.data_ptr());
|
|
T* query_ptr = reinterpret_cast<T*>(query.data_ptr());
|
|
T* key_cache_ptr = reinterpret_cast<T*>(key_cache.data_ptr());
|
|
T* value_cache_ptr = reinterpret_cast<T*>(value_cache.data_ptr());
|
|
int* block_tables_ptr = block_tables.data_ptr<int>();
|
|
int* seq_lens_ptr = seq_lens.data_ptr<int>();
|
|
|
|
switch (head_size) {
|
|
case 32:
|
|
LAUNCH_V1_ATTENTION_KERNEL(T, 32, BLOCK_SIZE);
|
|
break;
|
|
case 64:
|
|
LAUNCH_V1_ATTENTION_KERNEL(T, 64, BLOCK_SIZE);
|
|
break;
|
|
case 80:
|
|
LAUNCH_V1_ATTENTION_KERNEL(T, 80, BLOCK_SIZE);
|
|
break;
|
|
case 96:
|
|
LAUNCH_V1_ATTENTION_KERNEL(T, 96, BLOCK_SIZE);
|
|
break;
|
|
case 112:
|
|
LAUNCH_V1_ATTENTION_KERNEL(T, 112, BLOCK_SIZE);
|
|
break;
|
|
case 128:
|
|
LAUNCH_V1_ATTENTION_KERNEL(T, 128, BLOCK_SIZE);
|
|
break;
|
|
case 192:
|
|
LAUNCH_V1_ATTENTION_KERNEL(T, 192, BLOCK_SIZE);
|
|
break;
|
|
case 256:
|
|
LAUNCH_V1_ATTENTION_KERNEL(T, 256, BLOCK_SIZE);
|
|
break;
|
|
default:
|
|
TORCH_CHECK(false, "Unsupported head size: ", head_size);
|
|
break;
|
|
}
|
|
}
|
|
|
|
#define CALL_V1_KERNEL_LAUNCHER(T, BLOCK_SIZE) \
|
|
paged_attention_v1_impl_launcher<T, BLOCK_SIZE>( \
|
|
out, query, key_cache, value_cache, num_kv_heads, scale, block_tables, \
|
|
seq_lens, max_seq_len, alibi_slopes);
|
|
|
|
#define CALL_V1_KERNEL_LAUNCHER_BLOCK_SIZE(T) \
|
|
switch (block_size) { \
|
|
case 16: \
|
|
CALL_V1_KERNEL_LAUNCHER(T, 16); \
|
|
break; \
|
|
default: \
|
|
TORCH_CHECK(false, "Unsupported block size: ", block_size); \
|
|
break; \
|
|
}
|
|
} // namespace
|
|
|
|
void paged_attention_v1(
|
|
torch::Tensor& out, torch::Tensor& query, torch::Tensor& key_cache,
|
|
torch::Tensor& value_cache, int64_t num_kv_heads, double scale,
|
|
torch::Tensor& block_tables, torch::Tensor& seq_lens, int64_t block_size,
|
|
int64_t max_seq_len, const std::optional<torch::Tensor>& alibi_slopes,
|
|
const std::string& kv_cache_dtype, torch::Tensor& k_scale,
|
|
torch::Tensor& v_scale, const int64_t tp_rank,
|
|
const int64_t blocksparse_local_blocks,
|
|
const int64_t blocksparse_vert_stride, const int64_t blocksparse_block_size,
|
|
const int64_t blocksparse_head_sliding_step) {
|
|
TORCH_CHECK(blocksparse_vert_stride <= 1,
|
|
"CPU backend does not support blocksparse attention yet.");
|
|
VLLM_DISPATCH_FLOATING_TYPES(query.scalar_type(), "paged_attention_v1_impl",
|
|
[&] {
|
|
CPU_KERNEL_GUARD_IN(paged_attention_v1_impl)
|
|
CALL_V1_KERNEL_LAUNCHER_BLOCK_SIZE(scalar_t);
|
|
CPU_KERNEL_GUARD_OUT(paged_attention_v1_impl)
|
|
});
|
|
}
|
|
|
|
// Paged attention v2
|
|
namespace {
|
|
template <typename scalar_t, int HEAD_SIZE, int BLOCK_SIZE, int PARTITION_SIZE>
|
|
struct paged_attention_v2_impl {
|
|
static void call(
|
|
scalar_t* __restrict__ out, // [num_seqs, num_heads, head_size]
|
|
float* __restrict__ exp_sums, // [num_seqs, num_heads,
|
|
// max_num_partitions]
|
|
float* __restrict__ max_logits, // [num_seqs, num_heads,
|
|
// max_num_partitions]
|
|
scalar_t* __restrict__ tmp_out, // [num_seqs, num_heads,
|
|
// max_num_partitions, head_size]
|
|
const scalar_t* __restrict__ q, // [num_seqs, num_heads, head_size]
|
|
const scalar_t* __restrict__ k_cache, // [num_blocks, num_kv_heads,
|
|
// head_size/x, block_size, x]
|
|
const scalar_t* __restrict__ v_cache, // [num_blocks, num_kv_heads,
|
|
// head_size, block_size]
|
|
const int num_kv_heads, const float scale,
|
|
const int* __restrict__ block_tables, // [num_seqs,
|
|
// max_num_blocks_per_seq]
|
|
const int* __restrict__ seq_lens, // [num_seqs]
|
|
const int max_num_blocks_per_seq,
|
|
const float* __restrict__ alibi_slopes, // [num_heads]
|
|
const int q_stride, const int kv_block_stride, const int kv_head_stride,
|
|
const int num_seqs, const int num_heads, const int max_num_partitions) {
|
|
constexpr int x = 16 / sizeof(scalar_t);
|
|
const int num_queries_per_kv = num_heads / num_kv_heads;
|
|
|
|
static_assert(BLOCK_SIZE == 16);
|
|
static_assert(PARTITION_SIZE * sizeof(float) % 64 == 0);
|
|
static_assert(PARTITION_SIZE % BLOCK_SIZE == 0);
|
|
|
|
#pragma omp parallel for collapse(3) schedule(static, 1)
|
|
for (int seq_idx = 0; seq_idx < num_seqs; ++seq_idx) {
|
|
for (int partition_idx = 0; partition_idx < max_num_partitions;
|
|
++partition_idx) {
|
|
for (int head_idx = 0; head_idx < num_heads; ++head_idx) {
|
|
const int seq_len = seq_lens[seq_idx];
|
|
const int start_token_idx = partition_idx * PARTITION_SIZE;
|
|
|
|
if (start_token_idx >= seq_len) continue;
|
|
|
|
const int partition_num =
|
|
(seq_len + PARTITION_SIZE - 1) / PARTITION_SIZE;
|
|
const bool no_reduce = (partition_num == 1);
|
|
const int token_num =
|
|
(std::min(seq_len, start_token_idx + PARTITION_SIZE) -
|
|
start_token_idx);
|
|
const int block_num = (token_num + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
|
const int last_block_token_num =
|
|
token_num - (block_num - 1) * BLOCK_SIZE;
|
|
const int* seq_block_table = block_tables +
|
|
max_num_blocks_per_seq * seq_idx +
|
|
start_token_idx / BLOCK_SIZE;
|
|
const int64_t kv_head_idx = head_idx / num_queries_per_kv;
|
|
const scalar_t* __restrict__ q_vec_ptr =
|
|
q + seq_idx * q_stride + head_idx * HEAD_SIZE;
|
|
|
|
float logits[PARTITION_SIZE] __attribute__((aligned(64))) = {0};
|
|
|
|
// Compute logits
|
|
for (int block_idx = 0; block_idx < block_num; ++block_idx) {
|
|
const int64_t physical_block_idx = seq_block_table[block_idx];
|
|
const scalar_t* __restrict__ k_block_cache_ptr =
|
|
k_cache + physical_block_idx * kv_block_stride +
|
|
kv_head_idx * kv_head_stride;
|
|
float* __restrict__ head_block_logits =
|
|
logits + block_idx * BLOCK_SIZE;
|
|
|
|
reduceQKBlockKernel<scalar_t, HEAD_SIZE, BLOCK_SIZE, x>::call(
|
|
q_vec_ptr, k_block_cache_ptr, head_block_logits, scale,
|
|
block_idx == block_num - 1 ? last_block_token_num : BLOCK_SIZE);
|
|
}
|
|
|
|
std::pair<float, float> max_and_sum;
|
|
if (alibi_slopes) {
|
|
max_and_sum = reduceSoftmaxAlibi(
|
|
logits, token_num, block_num * BLOCK_SIZE,
|
|
alibi_slopes[head_idx], start_token_idx, seq_len);
|
|
} else {
|
|
max_and_sum =
|
|
reduceSoftmax(logits, token_num, block_num * BLOCK_SIZE);
|
|
}
|
|
|
|
auto&& [max_logit, exp_sum] = max_and_sum;
|
|
|
|
scalar_t* __restrict__ output_buffer = nullptr;
|
|
if (!no_reduce) {
|
|
auto idx = seq_idx * num_heads * max_num_partitions +
|
|
head_idx * max_num_partitions + partition_idx;
|
|
max_logits[idx] = max_logit;
|
|
exp_sums[idx] = exp_sum;
|
|
output_buffer =
|
|
tmp_out + seq_idx * num_heads * max_num_partitions * HEAD_SIZE +
|
|
head_idx * max_num_partitions * HEAD_SIZE +
|
|
partition_idx * HEAD_SIZE;
|
|
} else {
|
|
output_buffer =
|
|
out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE;
|
|
}
|
|
|
|
// Compute value
|
|
constexpr int head_elem_num_per_partition = 16;
|
|
constexpr int head_partition_num =
|
|
HEAD_SIZE / head_elem_num_per_partition;
|
|
for (int head_part_idx = 0; head_part_idx < head_partition_num;
|
|
++head_part_idx) {
|
|
vec_op::FP32Vec16 accums[head_elem_num_per_partition];
|
|
scalar_t* __restrict__ out_ptr =
|
|
output_buffer + head_part_idx * head_elem_num_per_partition;
|
|
for (int block_idx = 0; block_idx < block_num; ++block_idx) {
|
|
const int64_t physical_block_idx = seq_block_table[block_idx];
|
|
const float* __restrict__ prob_vec_ptr =
|
|
logits + block_idx * BLOCK_SIZE;
|
|
const scalar_t* __restrict__ v_block_cache_ptr =
|
|
v_cache + physical_block_idx * kv_block_stride +
|
|
kv_head_idx * kv_head_stride +
|
|
BLOCK_SIZE * head_part_idx * head_elem_num_per_partition;
|
|
reduceValueBlock<scalar_t, HEAD_SIZE, BLOCK_SIZE,
|
|
head_elem_num_per_partition>(
|
|
prob_vec_ptr, v_block_cache_ptr, accums);
|
|
|
|
if (block_idx != block_num - 1) {
|
|
const int64_t next_physical_block_idx =
|
|
seq_block_table[block_idx + 1];
|
|
const scalar_t* __restrict__ next_v_block_cache_ptr =
|
|
v_cache + next_physical_block_idx * kv_block_stride +
|
|
kv_head_idx * kv_head_stride +
|
|
BLOCK_SIZE * head_part_idx * head_elem_num_per_partition;
|
|
vec_op::unroll_loop<int, head_elem_num_per_partition>(
|
|
[&](int head_elem_idx) {
|
|
if (head_elem_idx % 2 == 0) {
|
|
vec_op::prefetch(next_v_block_cache_ptr +
|
|
BLOCK_SIZE * head_elem_idx);
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
vec_op::unroll_loop<int, head_elem_num_per_partition>(
|
|
[&](int head_elem_idx) {
|
|
float value = accums[head_elem_idx].reduce_sum();
|
|
vec_op::storeFP32(value, out_ptr + head_elem_idx);
|
|
});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Rescale partition softmax and store the factors to exp_sums
|
|
#pragma omp parallel for collapse(2) schedule(static, 1)
|
|
for (int seq_idx = 0; seq_idx < num_seqs; ++seq_idx) {
|
|
for (int head_idx = 0; head_idx < num_heads; ++head_idx) {
|
|
const int seq_len = seq_lens[seq_idx];
|
|
const int partition_num =
|
|
(seq_len + PARTITION_SIZE - 1) / PARTITION_SIZE;
|
|
|
|
if (partition_num == 1) continue;
|
|
|
|
reducePartitonSoftmax(
|
|
max_logits + seq_idx * num_heads * max_num_partitions +
|
|
head_idx * max_num_partitions,
|
|
exp_sums + seq_idx * num_heads * max_num_partitions +
|
|
head_idx * max_num_partitions,
|
|
partition_num);
|
|
}
|
|
}
|
|
|
|
// Reduce values
|
|
using v_load_vec_type = typename KernelVecType<scalar_t>::v_load_vec_type;
|
|
static_assert(v_load_vec_type::get_elem_num() == BLOCK_SIZE);
|
|
constexpr int head_elem_num_per_group =
|
|
16; // Note: didn't align with the cacheline size, due to some
|
|
// HEAD_SIZE didn't align with 64 bytes
|
|
static_assert(HEAD_SIZE % head_elem_num_per_group == 0);
|
|
constexpr int head_group_num = HEAD_SIZE / head_elem_num_per_group;
|
|
const float* __restrict__ rescale_factors = exp_sums;
|
|
#pragma omp parallel for collapse(3) schedule(static, 1)
|
|
for (int seq_idx = 0; seq_idx < num_seqs; ++seq_idx) {
|
|
for (int head_idx = 0; head_idx < num_heads; ++head_idx) {
|
|
for (int group_idx = 0; group_idx < head_group_num; ++group_idx) {
|
|
const int seq_len = seq_lens[seq_idx];
|
|
const int partition_num =
|
|
(seq_len + PARTITION_SIZE - 1) / PARTITION_SIZE;
|
|
|
|
if (partition_num == 1) continue;
|
|
|
|
const float* __restrict__ seq_head_rescale_factors =
|
|
rescale_factors + seq_idx * num_heads * max_num_partitions +
|
|
head_idx * max_num_partitions;
|
|
const scalar_t* __restrict__ seq_head_tmp_out =
|
|
tmp_out + seq_idx * num_heads * max_num_partitions * HEAD_SIZE +
|
|
head_idx * max_num_partitions * HEAD_SIZE +
|
|
group_idx * head_elem_num_per_group;
|
|
scalar_t* __restrict__ seq_head_output =
|
|
out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE +
|
|
group_idx * head_elem_num_per_group;
|
|
|
|
vec_op::FP32Vec16 acc;
|
|
for (int i = 0; i < partition_num; ++i) {
|
|
vec_op::FP32Vec16 rescale_factor(seq_head_rescale_factors[i]);
|
|
v_load_vec_type value(seq_head_tmp_out + i * HEAD_SIZE);
|
|
vec_op::FP32Vec16 fp32_value(value);
|
|
acc = acc + fp32_value * rescale_factor;
|
|
}
|
|
v_load_vec_type cast_acc(acc);
|
|
cast_acc.save(seq_head_output);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
#define LAUNCH_V2_ATTENTION_KERNEL(T, HEAD_SIZE, BLOCK_SIZE) \
|
|
paged_attention_v2_impl<T, HEAD_SIZE, BLOCK_SIZE, PARTITION_SIZE>::call( \
|
|
out_ptr, exp_sums_ptr, max_logits_ptr, tmp_out_ptr, query_ptr, \
|
|
key_cache_ptr, value_cache_ptr, num_kv_heads, scale, block_tables_ptr, \
|
|
seq_lens_ptr, max_num_blocks_per_seq, alibi_slopes_ptr, q_stride, \
|
|
kv_block_stride, kv_head_stride, num_seqs, num_heads, \
|
|
max_num_partitions);
|
|
|
|
template <typename T, int BLOCK_SIZE, int PARTITION_SIZE = 512>
|
|
void paged_attention_v2_impl_launcher(
|
|
torch::Tensor& out, torch::Tensor& exp_sums, torch::Tensor& max_logits,
|
|
torch::Tensor& tmp_out, torch::Tensor& query, torch::Tensor& key_cache,
|
|
torch::Tensor& value_cache, int num_kv_heads, float scale,
|
|
torch::Tensor& block_tables, torch::Tensor& seq_lens, int block_size,
|
|
int max_seq_len, const std::optional<torch::Tensor>& alibi_slopes) {
|
|
int num_seqs = query.size(0);
|
|
int num_heads = query.size(1);
|
|
int head_size = query.size(2);
|
|
int max_num_blocks_per_seq = block_tables.size(1);
|
|
int q_stride = query.stride(0);
|
|
int kv_block_stride = key_cache.stride(0);
|
|
int kv_head_stride = key_cache.stride(1);
|
|
int max_num_partitions = exp_sums.size(-1);
|
|
|
|
// NOTE: alibi_slopes is optional.
|
|
const float* alibi_slopes_ptr =
|
|
alibi_slopes
|
|
? reinterpret_cast<const float*>(alibi_slopes.value().data_ptr())
|
|
: nullptr;
|
|
|
|
T* out_ptr = reinterpret_cast<T*>(out.data_ptr());
|
|
float* exp_sums_ptr = reinterpret_cast<float*>(exp_sums.data_ptr());
|
|
float* max_logits_ptr = reinterpret_cast<float*>(max_logits.data_ptr());
|
|
T* tmp_out_ptr = reinterpret_cast<T*>(tmp_out.data_ptr());
|
|
T* query_ptr = reinterpret_cast<T*>(query.data_ptr());
|
|
T* key_cache_ptr = reinterpret_cast<T*>(key_cache.data_ptr());
|
|
T* value_cache_ptr = reinterpret_cast<T*>(value_cache.data_ptr());
|
|
int* block_tables_ptr = block_tables.data_ptr<int>();
|
|
int* seq_lens_ptr = seq_lens.data_ptr<int>();
|
|
|
|
switch (head_size) {
|
|
case 32:
|
|
LAUNCH_V2_ATTENTION_KERNEL(T, 32, BLOCK_SIZE);
|
|
break;
|
|
case 64:
|
|
LAUNCH_V2_ATTENTION_KERNEL(T, 64, BLOCK_SIZE);
|
|
break;
|
|
case 80:
|
|
LAUNCH_V2_ATTENTION_KERNEL(T, 80, BLOCK_SIZE);
|
|
break;
|
|
case 96:
|
|
LAUNCH_V2_ATTENTION_KERNEL(T, 96, BLOCK_SIZE);
|
|
break;
|
|
case 112:
|
|
LAUNCH_V2_ATTENTION_KERNEL(T, 112, BLOCK_SIZE);
|
|
break;
|
|
case 128:
|
|
LAUNCH_V2_ATTENTION_KERNEL(T, 128, BLOCK_SIZE);
|
|
break;
|
|
case 192:
|
|
LAUNCH_V2_ATTENTION_KERNEL(T, 192, BLOCK_SIZE);
|
|
break;
|
|
case 256:
|
|
LAUNCH_V2_ATTENTION_KERNEL(T, 256, BLOCK_SIZE);
|
|
break;
|
|
default:
|
|
TORCH_CHECK(false, "Unsupported head size: ", head_size);
|
|
break;
|
|
}
|
|
}
|
|
|
|
#define CALL_V2_KERNEL_LAUNCHER(T, BLOCK_SIZE) \
|
|
paged_attention_v2_impl_launcher<T, BLOCK_SIZE>( \
|
|
out, exp_sums, max_logits, tmp_out, query, key_cache, value_cache, \
|
|
num_kv_heads, scale, block_tables, seq_lens, block_size, max_seq_len, \
|
|
alibi_slopes);
|
|
|
|
#define CALL_V2_KERNEL_LAUNCHER_BLOCK_SIZE(T) \
|
|
switch (block_size) { \
|
|
case 16: \
|
|
CALL_V2_KERNEL_LAUNCHER(T, 16); \
|
|
break; \
|
|
default: \
|
|
TORCH_CHECK(false, "Unsupported block size: ", block_size); \
|
|
break; \
|
|
}
|
|
} // namespace
|
|
|
|
void paged_attention_v2(
|
|
torch::Tensor& out, torch::Tensor& exp_sums, torch::Tensor& max_logits,
|
|
torch::Tensor& tmp_out, torch::Tensor& query, torch::Tensor& key_cache,
|
|
torch::Tensor& value_cache, int64_t num_kv_heads, double scale,
|
|
torch::Tensor& block_tables, torch::Tensor& seq_lens, int64_t block_size,
|
|
int64_t max_seq_len, const std::optional<torch::Tensor>& alibi_slopes,
|
|
const std::string& kv_cache_dtype, torch::Tensor& k_scale,
|
|
torch::Tensor& v_scale, const int64_t tp_rank,
|
|
const int64_t blocksparse_local_blocks,
|
|
const int64_t blocksparse_vert_stride, const int64_t blocksparse_block_size,
|
|
const int64_t blocksparse_head_sliding_step) {
|
|
TORCH_CHECK(blocksparse_vert_stride <= 1,
|
|
"CPU backend does not support blocksparse attention yet.");
|
|
VLLM_DISPATCH_FLOATING_TYPES(query.scalar_type(), "paged_attention_v2_impl",
|
|
[&] {
|
|
CPU_KERNEL_GUARD_IN(paged_attention_v2_impl)
|
|
CALL_V2_KERNEL_LAUNCHER_BLOCK_SIZE(scalar_t);
|
|
CPU_KERNEL_GUARD_OUT(paged_attention_v2_impl)
|
|
});
|
|
} |