""" Test the piecewise compilation with a simple model so that we can exactly calculate the expected output and side effects. """ import os import torch from torch import nn from vllm.compilation.compile_context import set_compile_context from vllm.compilation.counter import compilation_counter from vllm.compilation.decorators import support_torch_compile from vllm.compilation.levels import CompilationLevel os.environ["VLLM_TORCH_COMPILE_LEVEL"] = str(CompilationLevel.PIECEWISE) global_counter = 0 @torch.library.custom_op("silly::attention", mutates_args=["out"]) def silly_attention(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, out: torch.Tensor) -> None: global global_counter global_counter += 1 print(f"{global_counter=}") out.copy_(q) out[0] += 1 @silly_attention.register_fake def _(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, out: torch.Tensor) -> None: return @support_torch_compile class SillyModel(nn.Module): def __init__(self) -> None: super().__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Overall effect: x += 1 x[0] += 2 global_counter += 2 """ x = x + 1 x = x + 2 out = torch.empty_like(x) torch.ops.silly.attention(x, x, x, out) x = out x = x - 2 x = x - 1 out = torch.empty_like(x) torch.ops.silly.attention(x, x, x, out) x = out x = x + 1 return x def test_simple_piecewise_compile(): model = SillyModel() directory = os.path.dirname(__file__) config = os.path.join(directory, "piecewise_compilation_config.json") os.environ["VLLM_TORCH_COMPILE_CONFIG"] = config input_buffer = torch.randn(100).cuda() with compilation_counter.expect( num_graphs_seen=1, # one graph for the model num_piecewise_graphs_seen=5, # 2 * num_layers + 1 num_piecewise_capturable_graphs_seen=3, # 1 + num_layers num_inductor_compilations=3, # num_piecewise_capturable_graphs_seen num_cudagraph_caputured= 6, # num_cudagraph_sizes * num_piecewise_capturable_graphs_seen ): with set_compile_context([1, 2]): model(input_buffer) model(input_buffer[:2]) model(input_buffer[:1]) input_buffer[:2].zero_() global global_counter global_counter = 0 output = model(input_buffer[:2]) assert global_counter == 2 assert torch.allclose(output.cpu(), torch.tensor([3., 1.])) # clean up to avoid side effects for other tests del os.environ["VLLM_TORCH_COMPILE_CONFIG"]