"""Tests for sparse cutlass kernels Run `pytest tests/kernels/test_semi_structured.py`. """ from typing import Optional, Tuple, Type import pytest import torch from vllm import _custom_ops as ops from vllm.platforms import current_platform CUDA_DEVICES = [ f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2) ] capability = current_platform.get_device_capability() capability = capability[0] * 10 + capability[1] def to_fp8(tensor: torch.Tensor): finfo = torch.finfo(torch.float8_e4m3fn) return torch.round(tensor.clamp( min=finfo.min, max=finfo.max)).to(dtype=torch.float8_e4m3fn) def to_int8(tensor: torch.Tensor): return torch.round(tensor.clamp(min=-128, max=127)).to(dtype=torch.int8) def rand_int8(shape: tuple, device: str = "cuda"): return to_int8(torch.rand(shape, device=device) * 255 - 128) def to_bf16(tensor: torch.Tensor) -> torch.Tensor: return tensor.to(dtype=torch.bfloat16) def to_fp16(tensor: torch.Tensor) -> torch.Tensor: return tensor.to(dtype=torch.float16) def prune_to_2_4(tensor): # Reshape tensor to [N, 4] where N is number of groups of 4 original_shape = tensor.shape reshaped = tensor.reshape(-1, 4) # Get indices of top 2 absolute values in each group of 4 _, indices = torch.topk(torch.abs(reshaped), k=2, dim=1) # Create binary mask mask = torch.zeros_like(reshaped) mask.scatter_(dim=1, index=indices, src=torch.ones_like(indices, dtype=mask.dtype)) # Apply mask and reshape back pruned = reshaped * mask # Turn all -0.0 to 0.0 pruned[pruned == -0.0] = 0.0 return pruned.reshape(original_shape) def make_rand_sparse_tensors( dtype: torch.dtype, m: int, n: int, k: int ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: a = torch.randn((m, k), device='cuda') * 5 b = torch.randn((n, k), device='cuda').t() * 5 b = prune_to_2_4(b.t()).t() if dtype == torch.int8: a, b = to_int8(a), to_int8(b) elif dtype == torch.float8_e4m3fn: a, b = to_fp8(a), to_fp8(b) elif dtype == torch.float16: a, b = to_fp16(a), to_fp16(b) elif dtype == torch.bfloat16: a, b = to_bf16(a), to_bf16(b) else: raise ValueError("unsupported dtype") b_compressed, e = ops.cutlass_sparse_compress(b.t()) # Compressed B, Metadata, Original A, B return b_compressed, e, a, b def baseline_scaled_mm(a: torch.Tensor, b: torch.Tensor, scale_a: torch.Tensor, scale_b: torch.Tensor, out_dtype: Type[torch.dtype], bias: Optional[torch.Tensor] = None) -> torch.Tensor: output = (scale_a * (scale_b * (torch.mm( a.to(dtype=torch.float32), b.to(dtype=torch.float32))))).to(out_dtype) if bias is not None: output = output + bias return output @pytest.mark.skipif(not current_platform.has_device_capability(90), reason="Sparse FP8 is not yet supported on this GPU type.") # Test working with a subset of A and B for sparse matmul def test_cutlass_sparse_subset(): big_m = 1024 m, n, k = 512, 512, 512 # Create tensors b_comp, e, whole_a, b = make_rand_sparse_tensors(torch.float8_e4m3fn, big_m, n, k) a = whole_a[0:m, 0:k] scale_a = torch.randn((1, 1), device="cuda", dtype=torch.float32) / 10 scale_b = torch.randn((1, 1), device="cuda", dtype=torch.float32) / 10 out = ops.cutlass_scaled_sparse_mm(a, b_comp, e, scale_a, scale_b, out_dtype=torch.bfloat16) baseline = baseline_scaled_mm(a, b, scale_a, scale_b, out_dtype=torch.bfloat16) torch.testing.assert_close(out, baseline, rtol=1e-1, atol=1e0)