# SPDX-License-Identifier: Apache-2.0 """ Tests gguf models against unquantized models generations Note: To pass the test, quantization higher than Q4 should be used """ import os from typing import NamedTuple import pytest from huggingface_hub import hf_hub_download from pytest import MarkDecorator from transformers import AutoTokenizer from tests.quantization.utils import is_quant_method_supported from ....conftest import VllmRunner from ....utils import multi_gpu_test from ...utils import check_logprobs_close os.environ["TOKENIZERS_PARALLELISM"] = "true" MAX_MODEL_LEN = 1024 class GGUFTestConfig(NamedTuple): original_model: str gguf_repo: str gguf_filename: str marks: list[MarkDecorator] = [] @property def gguf_model(self): return hf_hub_download(self.gguf_repo, filename=self.gguf_filename) LLAMA_CONFIG = GGUFTestConfig( original_model="meta-llama/Llama-3.2-1B-Instruct", gguf_repo="bartowski/Llama-3.2-1B-Instruct-GGUF", gguf_filename="Llama-3.2-1B-Instruct-IQ4_XS.gguf", marks=[pytest.mark.quant_model], ) QWEN2_CONFIG = GGUFTestConfig( original_model="Qwen/Qwen2.5-1.5B-Instruct", gguf_repo="Qwen/Qwen2.5-1.5B-Instruct-GGUF", gguf_filename="qwen2.5-1.5b-instruct-q6_k.gguf", ) PHI3_CONFIG = GGUFTestConfig( original_model="microsoft/Phi-3.5-mini-instruct", gguf_repo="bartowski/Phi-3.5-mini-instruct-GGUF", gguf_filename="Phi-3.5-mini-instruct-IQ4_XS.gguf", ) GPT2_CONFIG = GGUFTestConfig( original_model="openai-community/gpt2-large", gguf_repo="QuantFactory/gpt2-large-GGUF", gguf_filename="gpt2-large.Q4_K_M.gguf", ) STABLELM_CONFIG = GGUFTestConfig( original_model="stabilityai/stablelm-3b-4e1t", gguf_repo="afrideva/stablelm-3b-4e1t-GGUF", gguf_filename="stablelm-3b-4e1t.q4_k_m.gguf", ) STARCODER_CONFIG = GGUFTestConfig( original_model="bigcode/starcoder2-3b", gguf_repo="QuantFactory/starcoder2-3b-GGUF", gguf_filename="starcoder2-3b.Q6_K.gguf", ) DOLPHIN_CONFIG = GGUFTestConfig( # Test VocabParallelEmbedding sharding issue. original_model="cognitivecomputations/TinyDolphin-2.8-1.1b", gguf_repo="tsunemoto/TinyDolphin-2.8-1.1b-GGUF", gguf_filename="tinydolphin-2.8-1.1b.Q6_K.gguf", ) MODELS = [ LLAMA_CONFIG, QWEN2_CONFIG, PHI3_CONFIG, GPT2_CONFIG, STABLELM_CONFIG, DOLPHIN_CONFIG # STARCODER_CONFIG, # broken ] def check_model_outputs( vllm_runner: type[VllmRunner], prompts: list[str], model: GGUFTestConfig, dtype: str, max_tokens: int, num_logprobs: int, tp_size: int, ): tokenizer = AutoTokenizer.from_pretrained(model.original_model) if tokenizer.chat_template is not None: messages = [[{ 'role': 'user', 'content': prompt }] for prompt in prompts] prompts = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) # Run gguf model. with vllm_runner(model_name=model.gguf_model, enforce_eager=True, tokenizer_name=model.original_model, dtype=dtype, max_model_len=MAX_MODEL_LEN, tensor_parallel_size=tp_size) as gguf_model: gguf_outputs = gguf_model.generate_greedy_logprobs( prompts[:-1], max_tokens, num_logprobs) # Run unquantized model. # Should run with tp=1, otherwise the test will stuck at # nccl initialization. with vllm_runner( model_name=model.original_model, enforce_eager=True, # faster tests dtype=dtype, max_model_len=MAX_MODEL_LEN, tensor_parallel_size=1) as original_model: original_outputs = original_model.generate_greedy_logprobs( prompts[:-1], max_tokens, num_logprobs) check_logprobs_close( outputs_0_lst=original_outputs, outputs_1_lst=gguf_outputs, name_0="original", name_1="gguf", ) @pytest.mark.skipif(not is_quant_method_supported("gguf"), reason="gguf is not supported on this GPU type.") @pytest.mark.parametrize("model", [ pytest.param(test_config, marks=test_config.marks) for test_config in MODELS ]) @pytest.mark.parametrize("dtype", ["half"]) @pytest.mark.parametrize("max_tokens", [32]) @pytest.mark.parametrize("num_logprobs", [5]) @pytest.mark.parametrize("tp_size", [1]) def test_models( vllm_runner: type[VllmRunner], example_prompts: list[str], model: GGUFTestConfig, dtype: str, max_tokens: int, num_logprobs: int, tp_size: int, ) -> None: check_model_outputs(vllm_runner, example_prompts, model, dtype, max_tokens, num_logprobs, tp_size) @pytest.mark.skipif(not is_quant_method_supported("gguf"), reason="gguf is not supported on this GPU type.") @pytest.mark.parametrize("model", [LLAMA_CONFIG]) @pytest.mark.parametrize("dtype", ["half"]) @pytest.mark.parametrize("max_tokens", [8]) @pytest.mark.parametrize("num_logprobs", [5]) @pytest.mark.parametrize("tp_size", [2]) @multi_gpu_test(num_gpus=2) def test_distributed( vllm_runner: type[VllmRunner], example_prompts: list[str], model: GGUFTestConfig, dtype: str, max_tokens: int, num_logprobs: int, tp_size: int, ) -> None: check_model_outputs(vllm_runner, example_prompts, model, dtype, max_tokens, num_logprobs, tp_size)