import pytest import torch import vllm._custom_ops as ops from tests.kernels.quant_utils import (ref_dynamic_per_tensor_fp8_quant, ref_dynamic_per_token_quant) DTYPES = [torch.half, torch.bfloat16, torch.float] HIDDEN_SIZES = [1, 2, 3, 4, 16, 67, 768, 2048, 5120, 5137, 8192, 8193] # Arbitrary values for testing HIDDEN_SIZES += list(range(1024, 1033)) # vectorized conversion edge cases NUM_TOKENS = [1, 7, 83, 4096] # Arbitrary values for testing SEEDS = [0] @pytest.mark.parametrize("num_tokens", NUM_TOKENS) @pytest.mark.parametrize("hidden_size", HIDDEN_SIZES) @pytest.mark.parametrize("dtype", DTYPES) @pytest.mark.parametrize("seed", SEEDS) @torch.inference_mode() def test_dynamic_per_token_fp8_quant(num_tokens: int, hidden_size: int, dtype: torch.dtype, seed: int) -> None: torch.random.manual_seed(seed) torch.cuda.manual_seed(seed) x = torch.rand(num_tokens, hidden_size, dtype=dtype, device="cuda") + 1e-6 # avoid nans ref_out, ref_scales = ref_dynamic_per_token_quant(x, torch.float8_e4m3fn) ops_out, ops_scales = ops.scaled_fp8_quant(x, use_per_token_if_dynamic=True) assert torch.allclose(ref_scales, ops_scales) assert torch.allclose(ref_out.to(dtype=torch.float32), ops_out.to(dtype=torch.float32)) @pytest.mark.parametrize("num_tokens", NUM_TOKENS) @pytest.mark.parametrize("hidden_size", HIDDEN_SIZES) @pytest.mark.parametrize("dtype", DTYPES) @pytest.mark.parametrize("seed", SEEDS) @torch.inference_mode() def test_dynamic_per_tensor_fp8_quant(num_tokens: int, hidden_size: int, dtype: torch.dtype, seed: int) -> None: torch.random.manual_seed(seed) torch.cuda.manual_seed(seed) x = torch.rand(num_tokens, hidden_size, dtype=dtype, device="cuda") ref_out, ref_scale = ref_dynamic_per_tensor_fp8_quant(x) ops_out, ops_scale = ops.scaled_fp8_quant(x) assert torch.allclose(ref_scale, ops_scale) assert torch.allclose(ref_out.to(dtype=torch.float32), ops_out.to(dtype=torch.float32))