"""An example showing how to use vLLM to serve VLMs. Launch the vLLM server with the following command: (single image inference with Llava) vllm serve llava-hf/llava-1.5-7b-hf --chat-template template_llava.jinja (multi-image inference with Phi-3.5-vision-instruct) vllm serve microsoft/Phi-3.5-vision-instruct --max-model-len 4096 \ --trust-remote-code --limit-mm-per-prompt image=2 """ import base64 import requests from openai import OpenAI # Modify OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" client = OpenAI( # defaults to os.environ.get("OPENAI_API_KEY") api_key=openai_api_key, base_url=openai_api_base, ) models = client.models.list() model = models.data[0].id # Single-image input inference image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" ## Use image url in the payload chat_completion_from_url = client.chat.completions.create( messages=[{ "role": "user", "content": [ { "type": "text", "text": "What’s in this image?" }, { "type": "image_url", "image_url": { "url": image_url }, }, ], }], model=model, max_tokens=64, ) result = chat_completion_from_url.choices[0].message.content print("Chat completion output:", result) ## Use base64 encoded image in the payload def encode_image_base64_from_url(image_url: str) -> str: """Encode an image retrieved from a remote url to base64 format.""" with requests.get(image_url) as response: response.raise_for_status() result = base64.b64encode(response.content).decode('utf-8') return result image_base64 = encode_image_base64_from_url(image_url=image_url) chat_completion_from_base64 = client.chat.completions.create( messages=[{ "role": "user", "content": [ { "type": "text", "text": "What’s in this image?" }, { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{image_base64}" }, }, ], }], model=model, max_tokens=64, ) result = chat_completion_from_base64.choices[0].message.content print(f"Chat completion output:{result}") # Multi-image input inference image_url_duck = "https://upload.wikimedia.org/wikipedia/commons/d/da/2015_Kaczka_krzy%C5%BCowka_w_wodzie_%28samiec%29.jpg" image_url_lion = "https://upload.wikimedia.org/wikipedia/commons/7/77/002_The_lion_king_Snyggve_in_the_Serengeti_National_Park_Photo_by_Giles_Laurent.jpg" chat_completion_from_url = client.chat.completions.create( messages=[{ "role": "user", "content": [ { "type": "text", "text": "What are the animals in these images?" }, { "type": "image_url", "image_url": { "url": image_url_duck }, }, { "type": "image_url", "image_url": { "url": image_url_lion }, }, ], }], model=model, max_tokens=64, ) result = chat_completion_from_url.choices[0].message.content print("Chat completion output:", result)