(multimodal-inputs)= # Multimodal Inputs This page teaches you how to pass multi-modal inputs to [multi-modal models](#supported-mm-models) in vLLM. :::{note} We are actively iterating on multi-modal support. See [this RFC](gh-issue:4194) for upcoming changes, and [open an issue on GitHub](https://github.com/vllm-project/vllm/issues/new/choose) if you have any feedback or feature requests. ::: ## Offline Inference To input multi-modal data, follow this schema in {class}`vllm.inputs.PromptType`: - `prompt`: The prompt should follow the format that is documented on HuggingFace. - `multi_modal_data`: This is a dictionary that follows the schema defined in {class}`vllm.multimodal.inputs.MultiModalDataDict`. ### Image Inputs You can pass a single image to the `'image'` field of the multi-modal dictionary, as shown in the following examples: ```python from vllm import LLM llm = LLM(model="llava-hf/llava-1.5-7b-hf") # Refer to the HuggingFace repo for the correct format to use prompt = "USER: \nWhat is the content of this image?\nASSISTANT:" # Load the image using PIL.Image image = PIL.Image.open(...) # Single prompt inference outputs = llm.generate({ "prompt": prompt, "multi_modal_data": {"image": image}, }) for o in outputs: generated_text = o.outputs[0].text print(generated_text) # Batch inference image_1 = PIL.Image.open(...) image_2 = PIL.Image.open(...) outputs = llm.generate( [ { "prompt": "USER: \nWhat is the content of this image?\nASSISTANT:", "multi_modal_data": {"image": image_1}, }, { "prompt": "USER: \nWhat's the color of this image?\nASSISTANT:", "multi_modal_data": {"image": image_2}, } ] ) for o in outputs: generated_text = o.outputs[0].text print(generated_text) ``` Full example: To substitute multiple images inside the same text prompt, you can pass in a list of images instead: ```python from vllm import LLM llm = LLM( model="microsoft/Phi-3.5-vision-instruct", trust_remote_code=True, # Required to load Phi-3.5-vision max_model_len=4096, # Otherwise, it may not fit in smaller GPUs limit_mm_per_prompt={"image": 2}, # The maximum number to accept ) # Refer to the HuggingFace repo for the correct format to use prompt = "<|user|>\n<|image_1|>\n<|image_2|>\nWhat is the content of each image?<|end|>\n<|assistant|>\n" # Load the images using PIL.Image image1 = PIL.Image.open(...) image2 = PIL.Image.open(...) outputs = llm.generate({ "prompt": prompt, "multi_modal_data": { "image": [image1, image2] }, }) for o in outputs: generated_text = o.outputs[0].text print(generated_text) ``` Full example: Multi-image input can be extended to perform video captioning. We show this with [Qwen2-VL](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct) as it supports videos: ```python from vllm import LLM # Specify the maximum number of frames per video to be 4. This can be changed. llm = LLM("Qwen/Qwen2-VL-2B-Instruct", limit_mm_per_prompt={"image": 4}) # Create the request payload. video_frames = ... # load your video making sure it only has the number of frames specified earlier. message = { "role": "user", "content": [ {"type": "text", "text": "Describe this set of frames. Consider the frames to be a part of the same video."}, ], } for i in range(len(video_frames)): base64_image = encode_image(video_frames[i]) # base64 encoding. new_image = {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}} message["content"].append(new_image) # Perform inference and log output. outputs = llm.chat([message]) for o in outputs: generated_text = o.outputs[0].text print(generated_text) ``` ### Video Inputs You can pass a list of NumPy arrays directly to the `'video'` field of the multi-modal dictionary instead of using multi-image input. Full example: ### Audio Inputs You can pass a tuple `(array, sampling_rate)` to the `'audio'` field of the multi-modal dictionary. Full example: ### Embedding Inputs To input pre-computed embeddings belonging to a data type (i.e. image, video, or audio) directly to the language model, pass a tensor of shape `(num_items, feature_size, hidden_size of LM)` to the corresponding field of the multi-modal dictionary. ```python from vllm import LLM # Inference with image embeddings as input llm = LLM(model="llava-hf/llava-1.5-7b-hf") # Refer to the HuggingFace repo for the correct format to use prompt = "USER: \nWhat is the content of this image?\nASSISTANT:" # Embeddings for single image # torch.Tensor of shape (1, image_feature_size, hidden_size of LM) image_embeds = torch.load(...) outputs = llm.generate({ "prompt": prompt, "multi_modal_data": {"image": image_embeds}, }) for o in outputs: generated_text = o.outputs[0].text print(generated_text) ``` For Qwen2-VL and MiniCPM-V, we accept additional parameters alongside the embeddings: ```python # Construct the prompt based on your model prompt = ... # Embeddings for multiple images # torch.Tensor of shape (num_images, image_feature_size, hidden_size of LM) image_embeds = torch.load(...) # Qwen2-VL llm = LLM("Qwen/Qwen2-VL-2B-Instruct", limit_mm_per_prompt={"image": 4}) mm_data = { "image": { "image_embeds": image_embeds, # image_grid_thw is needed to calculate positional encoding. "image_grid_thw": torch.load(...), # torch.Tensor of shape (1, 3), } } # MiniCPM-V llm = LLM("openbmb/MiniCPM-V-2_6", trust_remote_code=True, limit_mm_per_prompt={"image": 4}) mm_data = { "image": { "image_embeds": image_embeds, # image_sizes is needed to calculate details of the sliced image. "image_sizes": [image.size for image in images], # list of image sizes } } outputs = llm.generate({ "prompt": prompt, "multi_modal_data": mm_data, }) for o in outputs: generated_text = o.outputs[0].text print(generated_text) ``` ## Online Serving Our OpenAI-compatible server accepts multi-modal data via the [Chat Completions API](https://platform.openai.com/docs/api-reference/chat). :::{important} A chat template is **required** to use Chat Completions API. Although most models come with a chat template, for others you have to define one yourself. The chat template can be inferred based on the documentation on the model's HuggingFace repo. For example, LLaVA-1.5 (`llava-hf/llava-1.5-7b-hf`) requires a chat template that can be found here: ::: ### Image Inputs Image input is supported according to [OpenAI Vision API](https://platform.openai.com/docs/guides/vision). Here is a simple example using Phi-3.5-Vision. First, launch the OpenAI-compatible server: ```bash vllm serve microsoft/Phi-3.5-vision-instruct --task generate \ --trust-remote-code --max-model-len 4096 --limit-mm-per-prompt '{"image":2}' ``` Then, you can use the OpenAI client as follows: ```python from openai import OpenAI openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" client = OpenAI( api_key=openai_api_key, base_url=openai_api_base, ) # Single-image input inference image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" chat_response = client.chat.completions.create( model="microsoft/Phi-3.5-vision-instruct", messages=[{ "role": "user", "content": [ # NOTE: The prompt formatting with the image token `` is not needed # since the prompt will be processed automatically by the API server. {"type": "text", "text": "What’s in this image?"}, {"type": "image_url", "image_url": {"url": image_url}}, ], }], ) print("Chat completion output:", chat_response.choices[0].message.content) # Multi-image input inference image_url_duck = "https://upload.wikimedia.org/wikipedia/commons/d/da/2015_Kaczka_krzy%C5%BCowka_w_wodzie_%28samiec%29.jpg" image_url_lion = "https://upload.wikimedia.org/wikipedia/commons/7/77/002_The_lion_king_Snyggve_in_the_Serengeti_National_Park_Photo_by_Giles_Laurent.jpg" chat_response = client.chat.completions.create( model="microsoft/Phi-3.5-vision-instruct", messages=[{ "role": "user", "content": [ {"type": "text", "text": "What are the animals in these images?"}, {"type": "image_url", "image_url": {"url": image_url_duck}}, {"type": "image_url", "image_url": {"url": image_url_lion}}, ], }], ) print("Chat completion output:", chat_response.choices[0].message.content) ``` Full example: :::{tip} Loading from local file paths is also supported on vLLM: You can specify the allowed local media path via `--allowed-local-media-path` when launching the API server/engine, and pass the file path as `url` in the API request. ::: :::{tip} There is no need to place image placeholders in the text content of the API request - they are already represented by the image content. In fact, you can place image placeholders in the middle of the text by interleaving text and image content. ::: :::{note} By default, the timeout for fetching images through HTTP URL is `5` seconds. You can override this by setting the environment variable: ```console export VLLM_IMAGE_FETCH_TIMEOUT= ``` ::: ### Video Inputs Instead of `image_url`, you can pass a video file via `video_url`. Here is a simple example using [LLaVA-OneVision](https://huggingface.co/llava-hf/llava-onevision-qwen2-0.5b-ov-hf). First, launch the OpenAI-compatible server: ```bash vllm serve llava-hf/llava-onevision-qwen2-0.5b-ov-hf --task generate --max-model-len 8192 ``` Then, you can use the OpenAI client as follows: ```python from openai import OpenAI openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" client = OpenAI( api_key=openai_api_key, base_url=openai_api_base, ) video_url = "http://commondatastorage.googleapis.com/gtv-videos-bucket/sample/ForBiggerFun.mp4" ## Use video url in the payload chat_completion_from_url = client.chat.completions.create( messages=[{ "role": "user", "content": [ { "type": "text", "text": "What's in this video?" }, { "type": "video_url", "video_url": { "url": video_url }, }, ], }], model=model, max_completion_tokens=64, ) result = chat_completion_from_url.choices[0].message.content print("Chat completion output from image url:", result) ``` Full example: :::{note} By default, the timeout for fetching videos through HTTP URL is `30` seconds. You can override this by setting the environment variable: ```console export VLLM_VIDEO_FETCH_TIMEOUT= ``` ::: ### Audio Inputs Audio input is supported according to [OpenAI Audio API](https://platform.openai.com/docs/guides/audio?audio-generation-quickstart-example=audio-in). Here is a simple example using Ultravox-v0.5-1B. First, launch the OpenAI-compatible server: ```bash vllm serve fixie-ai/ultravox-v0_5-llama-3_2-1b ``` Then, you can use the OpenAI client as follows: ```python import base64 import requests from openai import OpenAI from vllm.assets.audio import AudioAsset def encode_base64_content_from_url(content_url: str) -> str: """Encode a content retrieved from a remote url to base64 format.""" with requests.get(content_url) as response: response.raise_for_status() result = base64.b64encode(response.content).decode('utf-8') return result openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" client = OpenAI( api_key=openai_api_key, base_url=openai_api_base, ) # Any format supported by librosa is supported audio_url = AudioAsset("winning_call").url audio_base64 = encode_base64_content_from_url(audio_url) chat_completion_from_base64 = client.chat.completions.create( messages=[{ "role": "user", "content": [ { "type": "text", "text": "What's in this audio?" }, { "type": "input_audio", "input_audio": { "data": audio_base64, "format": "wav" }, }, ], }], model=model, max_completion_tokens=64, ) result = chat_completion_from_base64.choices[0].message.content print("Chat completion output from input audio:", result) ``` Alternatively, you can pass `audio_url`, which is the audio counterpart of `image_url` for image input: ```python chat_completion_from_url = client.chat.completions.create( messages=[{ "role": "user", "content": [ { "type": "text", "text": "What's in this audio?" }, { "type": "audio_url", "audio_url": { "url": audio_url }, }, ], }], model=model, max_completion_tokens=64, ) result = chat_completion_from_url.choices[0].message.content print("Chat completion output from audio url:", result) ``` Full example: :::{note} By default, the timeout for fetching audios through HTTP URL is `10` seconds. You can override this by setting the environment variable: ```console export VLLM_AUDIO_FETCH_TIMEOUT= ``` ::: ### Embedding Inputs To input pre-computed embeddings belonging to a data type (i.e. image, video, or audio) directly to the language model, pass a tensor of shape to the corresponding field of the multi-modal dictionary. #### Image Embedding Inputs For image embeddings, you can pass the base64-encoded tensor to the `image_embeds` field. The following example demonstrates how to pass image embeddings to the OpenAI server: ```python image_embedding = torch.load(...) grid_thw = torch.load(...) # Required by Qwen/Qwen2-VL-2B-Instruct buffer = io.BytesIO() torch.save(image_embedding, buffer) buffer.seek(0) binary_data = buffer.read() base64_image_embedding = base64.b64encode(binary_data).decode('utf-8') client = OpenAI( # defaults to os.environ.get("OPENAI_API_KEY") api_key=openai_api_key, base_url=openai_api_base, ) # Basic usage - this is equivalent to the LLaVA example for offline inference model = "llava-hf/llava-1.5-7b-hf" embeds = { "type": "image_embeds", "image_embeds": f"{base64_image_embedding}" } # Pass additional parameters (available to Qwen2-VL and MiniCPM-V) model = "Qwen/Qwen2-VL-2B-Instruct" embeds = { "type": "image_embeds", "image_embeds": { "image_embeds": f"{base64_image_embedding}" , # Required "image_grid_thw": f"{base64_image_grid_thw}" # Required by Qwen/Qwen2-VL-2B-Instruct }, } model = "openbmb/MiniCPM-V-2_6" embeds = { "type": "image_embeds", "image_embeds": { "image_embeds": f"{base64_image_embedding}" , # Required "image_sizes": f"{base64_image_sizes}" # Required by openbmb/MiniCPM-V-2_6 }, } chat_completion = client.chat.completions.create( messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": [ { "type": "text", "text": "What's in this image?", }, embeds, ], }, ], model=model, ) ``` :::{note} Only one message can contain `{"type": "image_embeds"}`. If used with a model that requires additional parameters, you must also provide a tensor for each of them, e.g. `image_grid_thw`, `image_sizes`, etc. :::