# SPDX-License-Identifier: Apache-2.0 """ This example shows how to use vLLM for running offline inference with the correct prompt format on audio language models. For most models, the prompt format should follow corresponding examples on HuggingFace model repository. """ from transformers import AutoTokenizer from vllm import LLM, SamplingParams from vllm.assets.audio import AudioAsset from vllm.utils import FlexibleArgumentParser audio_assets = [AudioAsset("mary_had_lamb"), AudioAsset("winning_call")] question_per_audio_count = { 0: "What is 1+1?", 1: "What is recited in the audio?", 2: "What sport and what nursery rhyme are referenced?" } # NOTE: The default `max_num_seqs` and `max_model_len` may result in OOM on # lower-end GPUs. # Unless specified, these settings have been tested to work on a single L4. # Ultravox 0.3 def run_ultravox(question: str, audio_count: int): model_name = "fixie-ai/ultravox-v0_3" tokenizer = AutoTokenizer.from_pretrained(model_name) messages = [{ 'role': 'user', 'content': "<|audio|>\n" * audio_count + question }] prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) llm = LLM(model=model_name, max_model_len=4096, max_num_seqs=5, trust_remote_code=True, limit_mm_per_prompt={"audio": audio_count}) stop_token_ids = None return llm, prompt, stop_token_ids # Qwen2-Audio def run_qwen2_audio(question: str, audio_count: int): model_name = "Qwen/Qwen2-Audio-7B-Instruct" llm = LLM(model=model_name, max_model_len=4096, max_num_seqs=5, limit_mm_per_prompt={"audio": audio_count}) audio_in_prompt = "".join([ f"Audio {idx+1}: " f"<|audio_bos|><|AUDIO|><|audio_eos|>\n" for idx in range(audio_count) ]) prompt = ("<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n" "<|im_start|>user\n" f"{audio_in_prompt}{question}<|im_end|>\n" "<|im_start|>assistant\n") stop_token_ids = None return llm, prompt, stop_token_ids def run_minicpmo(question: str, audio_count: int): model_name = "openbmb/MiniCPM-o-2_6" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) llm = LLM(model=model_name, trust_remote_code=True, max_model_len=4096, max_num_seqs=5, limit_mm_per_prompt={"audio": audio_count}) stop_tokens = ['<|im_end|>', '<|endoftext|>'] stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens] audio_placeholder = "()" * audio_count audio_chat_template = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n<|spk_bos|><|spk|><|spk_eos|><|tts_bos|>' }}{% endif %}" # noqa: E501 messages = [{ 'role': 'user', 'content': f'{audio_placeholder}\n{question}' }] prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, chat_template=audio_chat_template) return llm, prompt, stop_token_ids model_example_map = { "ultravox": run_ultravox, "qwen2_audio": run_qwen2_audio, "minicpmo": run_minicpmo } def main(args): model = args.model_type if model not in model_example_map: raise ValueError(f"Model type {model} is not supported.") audio_count = args.num_audios llm, prompt, stop_token_ids = model_example_map[model]( question_per_audio_count[audio_count], audio_count) # We set temperature to 0.2 so that outputs can be different # even when all prompts are identical when running batch inference. sampling_params = SamplingParams(temperature=0.2, max_tokens=64, stop_token_ids=stop_token_ids) mm_data = {} if audio_count > 0: mm_data = { "audio": [ asset.audio_and_sample_rate for asset in audio_assets[:audio_count] ] } assert args.num_prompts > 0 inputs = {"prompt": prompt, "multi_modal_data": mm_data} if args.num_prompts > 1: # Batch inference inputs = [inputs] * args.num_prompts outputs = llm.generate(inputs, sampling_params=sampling_params) for o in outputs: generated_text = o.outputs[0].text print(generated_text) if __name__ == "__main__": parser = FlexibleArgumentParser( description='Demo on using vLLM for offline inference with ' 'audio language models') parser.add_argument('--model-type', '-m', type=str, default="ultravox", choices=model_example_map.keys(), help='Huggingface "model_type".') parser.add_argument('--num-prompts', type=int, default=1, help='Number of prompts to run.') parser.add_argument("--num-audios", type=int, default=1, choices=[0, 1, 2], help="Number of audio items per prompt.") args = parser.parse_args() main(args)