# SPDX-License-Identifier: Apache-2.0 import pickle as pkl import time from dataclasses import dataclass from itertools import product from typing import Callable, Iterable, List, Optional import torch import torch.utils.benchmark as TBenchmark from torch.utils.benchmark import Measurement as TMeasurement from tqdm import tqdm import vllm._custom_ops as ops from vllm.model_executor.layers.layernorm import RMSNorm @dataclass class bench_params_t: num_tokens: int hidden_size: int add_residual: bool dtype: torch.dtype def description(self): return (f'N {self.num_tokens} ' f'x D {self.hidden_size} ' f'x R {self.add_residual} ' f'x DT {self.dtype}') def get_bench_params() -> List[bench_params_t]: ## Test Fixtures NUM_TOKENS = [2**x for x in range(11)] HIDDEN_SIZES = list(range(1024, 8129, 1024)) ADD_RESIDUAL = [True, False] DTYPES = [torch.bfloat16, torch.float] combinations = product(NUM_TOKENS, HIDDEN_SIZES, ADD_RESIDUAL, DTYPES) bench_params = list(map(lambda x: \ bench_params_t(x[0], x[1], x[2], x[3]), combinations)) return bench_params # Reference impls def unfused_int8_impl(rms_norm_layer: RMSNorm, x: torch.Tensor, residual: Optional[torch.Tensor], quant_dtype: torch.dtype): # Norm torch_out = None if residual is None: torch_out = rms_norm_layer.forward_cuda(x, residual) else: torch_out, _ = rms_norm_layer.forward_cuda(x, residual) # Quant torch_out, _, _ = ops.scaled_int8_quant(torch_out) def unfused_fp8_impl(rms_norm_layer: RMSNorm, x: torch.Tensor, residual: Optional[torch.Tensor], quant_dtype: torch.dtype): # Norm torch_out = None if residual is None: torch_out = rms_norm_layer.forward_cuda(x, residual) else: torch_out, _ = rms_norm_layer.forward_cuda(x, residual) # Quant torch_out, _ = ops.scaled_fp8_quant(torch_out) def fused_impl( rms_norm_layer: RMSNorm, # this stores the weights x: torch.Tensor, residual: Optional[torch.Tensor], quant_dtype: torch.dtype): out, _ = ops.rms_norm_dynamic_per_token_quant(x, rms_norm_layer.weight, 1e-6, quant_dtype, residual=residual) # Bench functions def bench_fn(rms_norm_layer: RMSNorm, x: torch.Tensor, residual: torch.Tensor, quant_dtype: torch.dtype, label: str, sub_label: str, fn: Callable, description: str) -> TMeasurement: min_run_time = 1 globals = { "rms_norm_layer": rms_norm_layer, "x": x, "residual": residual, "quant_dtype": quant_dtype, "fn": fn, } return TBenchmark.Timer( stmt="fn(rms_norm_layer, x, residual, quant_dtype)", globals=globals, label=label, sub_label=sub_label, description=description, ).blocked_autorange(min_run_time=min_run_time) def bench(params: bench_params_t, label: str, sub_label: str) \ -> Iterable[TMeasurement]: # Make inputs layer = RMSNorm(params.hidden_size, 1e-6).to(dtype=params.dtype) # Make weights layer.weight.data.normal_(mean=1.0, std=0.1) # Make inputs scale = 1 / params.hidden_size x = torch.randn(params.num_tokens, params.hidden_size, dtype=params.dtype, device='cuda') * scale residual = (torch.randn_like(x) * scale).to(device='cuda') \ if params.add_residual else None timers = [] # unfused int8 impl. timers.append( bench_fn(layer, x, residual, torch.int8, label, sub_label, unfused_int8_impl, "unfused_int8_impl")) # unfused fp8 impl. timers.append( bench_fn(layer, x, residual, torch.float8_e4m3fn, label, sub_label, unfused_fp8_impl, "unfused_fp8_impl")) # fused int8 impl. timers.append( bench_fn(layer, x, residual, torch.int8, label, sub_label, fused_impl, "fused_int8_impl")) # fused fp8 impl. timers.append( bench_fn(layer, x, residual, torch.float8_e4m3fn, label, sub_label, fused_impl, "fused_fp8_impl")) print_timers(timers) return timers # launch bench # runner def print_timers(timers: Iterable[TMeasurement]): compare = TBenchmark.Compare(timers) compare.print() def main(): torch.set_default_device('cuda') bench_params = get_bench_params() timers = [] for bp in tqdm(bench_params): timers.extend( bench(bp, "rms-norm-dynamic-per-token-quant", bp.description())) print_timers(timers) # pickle all the results timestamp = int(time.time()) with open(f"rms_norm_dpt_quant-{timestamp}.pkl", "wb") as f: pkl.dump(timers, f) if __name__ == '__main__': main()