""" This example shows how to use vLLM for running offline inference with the correct prompt format on audio language models. For most models, the prompt format should follow corresponding examples on HuggingFace model repository. """ from transformers import AutoTokenizer from vllm import LLM, SamplingParams from vllm.assets.audio import AudioAsset from vllm.utils import FlexibleArgumentParser # Input audio and question audio_and_sample_rate = AudioAsset("mary_had_lamb").audio_and_sample_rate question = "What is recited in the audio?" # Ultravox 0.3 def run_ultravox(question): model_name = "fixie-ai/ultravox-v0_3" tokenizer = AutoTokenizer.from_pretrained(model_name) messages = [{ 'role': 'user', 'content': f"<|reserved_special_token_0|>\n{question}" }] prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) llm = LLM(model=model_name) stop_token_ids = None return llm, prompt, stop_token_ids model_example_map = { "ultravox": run_ultravox, } def main(args): model = args.model_type if model not in model_example_map: raise ValueError(f"Model type {model} is not supported.") llm, prompt, stop_token_ids = model_example_map[model](question) # We set temperature to 0.2 so that outputs can be different # even when all prompts are identical when running batch inference. sampling_params = SamplingParams(temperature=0.2, max_tokens=64, stop_token_ids=stop_token_ids) assert args.num_prompts > 0 if args.num_prompts == 1: # Single inference inputs = { "prompt": prompt, "multi_modal_data": { "audio": audio_and_sample_rate }, } else: # Batch inference inputs = [{ "prompt": prompt, "multi_modal_data": { "audio": audio_and_sample_rate }, } for _ in range(args.num_prompts)] outputs = llm.generate(inputs, sampling_params=sampling_params) for o in outputs: generated_text = o.outputs[0].text print(generated_text) if __name__ == "__main__": parser = FlexibleArgumentParser( description='Demo on using vLLM for offline inference with ' 'audio language models') parser.add_argument('--model-type', '-m', type=str, default="ultravox", choices=model_example_map.keys(), help='Huggingface "model_type".') parser.add_argument('--num-prompts', type=int, default=1, help='Number of prompts to run.') args = parser.parse_args() main(args)