import os import subprocess import time import sys import pytest import requests import ray # using Ray for overall ease of process management, parallel requests, and debugging. import openai # use the official client for correctness check from huggingface_hub import snapshot_download # downloading lora to test lora requests from vllm.transformers_utils.tokenizer import get_tokenizer MAX_SERVER_START_WAIT_S = 600 # wait for server to start for 60 seconds MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta" # any model with a chat template should work here LORA_NAME = "typeof/zephyr-7b-beta-lora" # technically this needs Mistral-7B-v0.1 as base, but we're not testing generation quality here pytestmark = pytest.mark.asyncio @ray.remote(num_gpus=1) class ServerRunner: def __init__(self, args): env = os.environ.copy() env["PYTHONUNBUFFERED"] = "1" self.proc = subprocess.Popen( ["python3", "-m", "vllm.entrypoints.openai.api_server"] + args, env=env, stdout=sys.stdout, stderr=sys.stderr, ) self._wait_for_server() def ready(self): return True def _wait_for_server(self): # run health check start = time.time() while True: try: if requests.get( "http://localhost:8000/health").status_code == 200: break except Exception as err: if self.proc.poll() is not None: raise RuntimeError("Server exited unexpectedly.") from err time.sleep(0.5) if time.time() - start > MAX_SERVER_START_WAIT_S: raise RuntimeError( "Server failed to start in time.") from err def __del__(self): if hasattr(self, "proc"): self.proc.terminate() @pytest.fixture(scope="session") def zephyr_lora_files(): return snapshot_download(repo_id=LORA_NAME) @pytest.fixture(scope="session") def server(zephyr_lora_files): ray.init() server_runner = ServerRunner.remote([ "--model", MODEL_NAME, "--dtype", "bfloat16", # use half precision for speed and memory savings in CI environment "--max-model-len", "8192", "--enforce-eager", # lora config below "--enable-lora", "--lora-modules", f"zephyr-lora={zephyr_lora_files}", f"zephyr-lora2={zephyr_lora_files}", "--max-lora-rank", "64", "--max-cpu-loras", "2", "--max-num-seqs", "128" ]) ray.get(server_runner.ready.remote()) yield server_runner ray.shutdown() @pytest.fixture(scope="session") def client(): client = openai.AsyncOpenAI( base_url="http://localhost:8000/v1", api_key="token-abc123", ) yield client async def test_check_models(server, client: openai.AsyncOpenAI): models = await client.models.list() models = models.data served_model = models[0] lora_models = models[1:] assert served_model.id == MODEL_NAME assert all(model.root == MODEL_NAME for model in models) assert lora_models[0].id == "zephyr-lora" assert lora_models[1].id == "zephyr-lora2" @pytest.mark.parametrize( # first test base model, then test loras "model_name", [MODEL_NAME, "zephyr-lora", "zephyr-lora2"], ) async def test_single_completion(server, client: openai.AsyncOpenAI, model_name: str): completion = await client.completions.create(model=model_name, prompt="Hello, my name is", max_tokens=5, temperature=0.0) assert completion.id is not None assert completion.choices is not None and len(completion.choices) == 1 assert completion.choices[0].text is not None and len( completion.choices[0].text) >= 5 assert completion.choices[0].finish_reason == "length" assert completion.usage == openai.types.CompletionUsage( completion_tokens=5, prompt_tokens=6, total_tokens=11) # test using token IDs completion = await client.completions.create( model=MODEL_NAME, prompt=[0, 0, 0, 0, 0], max_tokens=5, temperature=0.0, ) assert completion.choices[0].text is not None and len( completion.choices[0].text) >= 5 @pytest.mark.parametrize( # just test 1 lora hereafter "model_name", [MODEL_NAME, "zephyr-lora"], ) async def test_single_chat_session(server, client: openai.AsyncOpenAI, model_name: str): messages = [{ "role": "system", "content": "you are a helpful assistant" }, { "role": "user", "content": "what is 1+1?" }] # test single completion chat_completion = await client.chat.completions.create(model=model_name, messages=messages, max_tokens=10, logprobs=True, top_logprobs=10) assert chat_completion.id is not None assert chat_completion.choices is not None and len( chat_completion.choices) == 1 assert chat_completion.choices[0].message is not None assert chat_completion.choices[0].logprobs is not None assert chat_completion.choices[0].logprobs.top_logprobs is not None assert len(chat_completion.choices[0].logprobs.top_logprobs[0]) == 10 message = chat_completion.choices[0].message assert message.content is not None and len(message.content) >= 10 assert message.role == "assistant" messages.append({"role": "assistant", "content": message.content}) # test multi-turn dialogue messages.append({"role": "user", "content": "express your result in json"}) chat_completion = await client.chat.completions.create( model=MODEL_NAME, messages=messages, max_tokens=10, ) message = chat_completion.choices[0].message assert message.content is not None and len(message.content) >= 0 @pytest.mark.parametrize( # just test 1 lora hereafter "model_name", [MODEL_NAME, "zephyr-lora"], ) async def test_completion_streaming(server, client: openai.AsyncOpenAI, model_name: str): prompt = "What is an LLM?" single_completion = await client.completions.create( model=model_name, prompt=prompt, max_tokens=5, temperature=0.0, ) single_output = single_completion.choices[0].text single_usage = single_completion.usage stream = await client.completions.create(model=model_name, prompt=prompt, max_tokens=5, temperature=0.0, stream=True) chunks = [] async for chunk in stream: chunks.append(chunk.choices[0].text) assert chunk.choices[0].finish_reason == "length" assert chunk.usage == single_usage assert "".join(chunks) == single_output @pytest.mark.parametrize( # just test 1 lora hereafter "model_name", [MODEL_NAME, "zephyr-lora"], ) async def test_chat_streaming(server, client: openai.AsyncOpenAI, model_name: str): messages = [{ "role": "system", "content": "you are a helpful assistant" }, { "role": "user", "content": "what is 1+1?" }] # test single completion chat_completion = await client.chat.completions.create( model=model_name, messages=messages, max_tokens=10, temperature=0.0, ) output = chat_completion.choices[0].message.content stop_reason = chat_completion.choices[0].finish_reason # test streaming stream = await client.chat.completions.create( model=model_name, messages=messages, max_tokens=10, temperature=0.0, stream=True, ) chunks = [] async for chunk in stream: delta = chunk.choices[0].delta if delta.role: assert delta.role == "assistant" if delta.content: chunks.append(delta.content) assert chunk.choices[0].finish_reason == stop_reason assert "".join(chunks) == output @pytest.mark.parametrize( # just test 1 lora hereafter "model_name", [MODEL_NAME, "zephyr-lora"], ) async def test_batch_completions(server, client: openai.AsyncOpenAI, model_name: str): # test simple list batch = await client.completions.create( model=model_name, prompt=["Hello, my name is", "Hello, my name is"], max_tokens=5, temperature=0.0, ) assert len(batch.choices) == 2 assert batch.choices[0].text == batch.choices[1].text # test n = 2 batch = await client.completions.create( model=model_name, prompt=["Hello, my name is", "Hello, my name is"], n=2, max_tokens=5, temperature=0.0, extra_body=dict( # NOTE: this has to be true for n > 1 in vLLM, but not necessary for official client. use_beam_search=True), ) assert len(batch.choices) == 4 assert batch.choices[0].text != batch.choices[ 1].text, "beam search should be different" assert batch.choices[0].text == batch.choices[ 2].text, "two copies of the same prompt should be the same" assert batch.choices[1].text == batch.choices[ 3].text, "two copies of the same prompt should be the same" # test streaming batch = await client.completions.create( model=model_name, prompt=["Hello, my name is", "Hello, my name is"], max_tokens=5, temperature=0.0, stream=True, ) texts = [""] * 2 async for chunk in batch: assert len(chunk.choices) == 1 choice = chunk.choices[0] texts[choice.index] += choice.text assert texts[0] == texts[1] async def test_logits_bias(server, client: openai.AsyncOpenAI): prompt = "Hello, my name is" max_tokens = 5 tokenizer = get_tokenizer(tokenizer_name=MODEL_NAME) # Test exclusive selection token_id = 1000 completion = await client.completions.create( model=MODEL_NAME, prompt=prompt, max_tokens=max_tokens, temperature=0.0, logit_bias={str(token_id): 100}, ) assert completion.choices[0].text is not None and len( completion.choices[0].text) >= 5 response_tokens = tokenizer(completion.choices[0].text, add_special_tokens=False)["input_ids"] expected_tokens = tokenizer(tokenizer.decode([token_id] * 5), add_special_tokens=False)["input_ids"] assert all([ response == expected for response, expected in zip(response_tokens, expected_tokens) ]) # Test ban completion = await client.completions.create( model=MODEL_NAME, prompt=prompt, max_tokens=max_tokens, temperature=0.0, ) response_tokens = tokenizer(completion.choices[0].text, add_special_tokens=False)["input_ids"] first_response = completion.choices[0].text completion = await client.completions.create( model=MODEL_NAME, prompt=prompt, max_tokens=max_tokens, temperature=0.0, logit_bias={str(token): -100 for token in response_tokens}, ) assert first_response != completion.choices[0].text if __name__ == "__main__": pytest.main([__file__])