#pragma once #include void paged_attention_v1( torch::Tensor& out, torch::Tensor& query, torch::Tensor& key_cache, torch::Tensor& value_cache, int num_kv_heads, float scale, torch::Tensor& block_tables, torch::Tensor& context_lens, int block_size, int max_context_len, const c10::optional& alibi_slopes, const std::string& kv_cache_dtype, float kv_scale); void paged_attention_v2( torch::Tensor& out, torch::Tensor& exp_sums, torch::Tensor& max_logits, torch::Tensor& tmp_out, torch::Tensor& query, torch::Tensor& key_cache, torch::Tensor& value_cache, int num_kv_heads, float scale, torch::Tensor& block_tables, torch::Tensor& context_lens, int block_size, int max_context_len, const c10::optional& alibi_slopes, const std::string& kv_cache_dtype, float kv_scale); void rms_norm( torch::Tensor& out, torch::Tensor& input, torch::Tensor& weight, float epsilon); void fused_add_rms_norm( torch::Tensor& input, torch::Tensor& residual, torch::Tensor& weight, float epsilon); void rotary_embedding( torch::Tensor& positions, torch::Tensor& query, torch::Tensor& key, int head_size, torch::Tensor& cos_sin_cache, bool is_neox); void batched_rotary_embedding( torch::Tensor& positions, torch::Tensor& query, torch::Tensor& key, int head_size, torch::Tensor& cos_sin_cache, bool is_neox, int rot_dim, torch::Tensor& cos_sin_cache_offsets); void silu_and_mul( torch::Tensor& out, torch::Tensor& input); void gelu_and_mul( torch::Tensor& out, torch::Tensor& input); void gelu_tanh_and_mul( torch::Tensor& out, torch::Tensor& input); void gelu_new( torch::Tensor& out, torch::Tensor& input); void gelu_fast( torch::Tensor& out, torch::Tensor& input); #ifndef USE_ROCM torch::Tensor aqlm_gemm( const torch::Tensor& input, const torch::Tensor& codes, const torch::Tensor& codebooks, const torch::Tensor& scales, const torch::Tensor& codebook_partition_sizes, const std::optional& bias ); torch::Tensor aqlm_dequant( const torch::Tensor& codes, const torch::Tensor& codebooks, const torch::Tensor& codebook_partition_sizes ); torch::Tensor awq_gemm( torch::Tensor _in_feats, torch::Tensor _kernel, torch::Tensor _scaling_factors, torch::Tensor _zeros, int split_k_iters); torch::Tensor awq_dequantize( torch::Tensor _kernel, torch::Tensor _scaling_factors, torch::Tensor _zeros, int split_k_iters, int thx, int thy); torch::Tensor marlin_gemm( torch::Tensor& a, torch::Tensor& b_q_weight, torch::Tensor& b_scales, torch::Tensor& workspace, int64_t size_m, int64_t size_n, int64_t size_k); #endif void squeezellm_gemm( torch::Tensor vec, torch::Tensor mat, torch::Tensor mul, torch::Tensor lookup_table); torch::Tensor gptq_gemm( torch::Tensor a, torch::Tensor b_q_weight, torch::Tensor b_gptq_qzeros, torch::Tensor b_gptq_scales, torch::Tensor b_g_idx, bool use_exllama, int bit); void gptq_shuffle( torch::Tensor q_weight, torch::Tensor q_perm, int bit); void static_scaled_fp8_quant( torch::Tensor& out, torch::Tensor& input, torch::Tensor& scale); void dynamic_scaled_fp8_quant( torch::Tensor& out, torch::Tensor& input, torch::Tensor& scale); void moe_align_block_size( torch::Tensor topk_ids, int num_experts, int block_size, torch::Tensor sorted_token_ids, torch::Tensor experts_ids, torch::Tensor num_tokens_post_pad); #ifndef USE_ROCM using fptr_t = uint64_t; fptr_t init_custom_ar(torch::Tensor &meta, torch::Tensor &rank_data, const std::vector &handles, const std::vector &offsets, int rank, bool full_nvlink); bool should_custom_ar(torch::Tensor &inp, int max_size, int world_size, bool full_nvlink); void all_reduce_reg(fptr_t _fa, torch::Tensor &inp, torch::Tensor &out); void all_reduce_unreg(fptr_t _fa, torch::Tensor &inp, torch::Tensor ®_buffer, torch::Tensor &out); void dispose(fptr_t _fa); int meta_size(); void register_buffer(fptr_t _fa, torch::Tensor &t, const std::vector &handles, const std::vector &offsets); std::pair, std::vector> get_graph_buffer_ipc_meta(fptr_t _fa); void register_graph_buffers(fptr_t _fa, const std::vector &handles, const std::vector> &offsets); #endif