# SPDX-License-Identifier: Apache-2.0 """Compare the classification outputs of HF and vLLM models. Run `pytest tests/models/test_cls_models.py`. """ import pytest import torch from transformers import AutoModelForSequenceClassification @pytest.mark.parametrize( "model", [ pytest.param("jason9693/Qwen2.5-1.5B-apeach", marks=[pytest.mark.core_model, pytest.mark.cpu_model]), ], ) @pytest.mark.parametrize("dtype", ["float"]) def test_classification_models( hf_runner, vllm_runner, example_prompts, model: str, dtype: str, ) -> None: with vllm_runner(model, dtype=dtype) as vllm_model: vllm_outputs = vllm_model.classify(example_prompts) # This test is for verifying whether the model's extra_repr # can be printed correctly. def print_model(model): print(model) vllm_model.apply_model(print_model) with hf_runner(model, dtype=dtype, auto_cls=AutoModelForSequenceClassification) as hf_model: hf_outputs = hf_model.classify(example_prompts) # check logits difference for hf_output, vllm_output in zip(hf_outputs, vllm_outputs): hf_output = torch.tensor(hf_output) vllm_output = torch.tensor(vllm_output) assert torch.allclose(hf_output, vllm_output, 1e-3)