import os import subprocess from PIL import Image from vllm import LLM, SamplingParams # The assets are located at `s3://air-example-data-2/vllm_opensource_llava/`. # You can use `.buildkite/download-images.sh` to download them def run_phi3v(): model_path = "microsoft/Phi-3-vision-128k-instruct" # Note: The default setting of max_num_seqs (256) and # max_model_len (128k) for this model may cause OOM. # You may lower either to run this example on lower-end GPUs. # In this example, we override max_num_seqs to 5 while # keeping the original context length of 128k. llm = LLM( model=model_path, trust_remote_code=True, max_num_seqs=5, ) image = Image.open("images/cherry_blossom.jpg") # single-image prompt prompt = "<|user|>\n<|image_1|>\nWhat is the season?<|end|>\n<|assistant|>\n" # noqa: E501 sampling_params = SamplingParams(temperature=0, max_tokens=64) outputs = llm.generate( { "prompt": prompt, "multi_modal_data": { "image": image }, }, sampling_params=sampling_params) for o in outputs: generated_text = o.outputs[0].text print(generated_text) if __name__ == "__main__": s3_bucket_path = "s3://air-example-data-2/vllm_opensource_llava/" local_directory = "images" # Make sure the local directory exists or create it os.makedirs(local_directory, exist_ok=True) # Use AWS CLI to sync the directory, assume anonymous access subprocess.check_call([ "aws", "s3", "sync", s3_bucket_path, local_directory, "--no-sign-request", ]) run_phi3v()