"""Compare the short outputs of HF and vLLM when using greedy sampling. VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 has to be set before running this test. Run `VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest tests/basic_correctness/test_preemption.py`. """ import pytest from vllm import SamplingParams from vllm.core.scheduler import (ARTIFICIAL_PREEMPTION_MAX_CNT, ENABLE_ARTIFICIAL_PREEMPT) MODELS = [ "facebook/opt-125m", ] assert ENABLE_ARTIFICIAL_PREEMPT is True, ( "Use an env var VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1. " "`VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest " "tests/basic_correctness/test_preemption.py`") @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("dtype", ["half"]) @pytest.mark.parametrize("max_tokens", [96]) @pytest.mark.parametrize("chunked_prefill_token_size", [16]) def test_chunked_prefill_recompute( hf_runner, vllm_runner, example_prompts, model: str, dtype: str, max_tokens: int, chunked_prefill_token_size: int, ) -> None: """Ensure that chunked prefill works with preemption.""" max_num_seqs = min(chunked_prefill_token_size, 256) enable_chunked_prefill = False max_num_batched_tokens = None if chunked_prefill_token_size != -1: enable_chunked_prefill = True max_num_batched_tokens = chunked_prefill_token_size hf_model = hf_runner(model, dtype=dtype) hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens) del hf_model vllm_model = vllm_runner( model, dtype=dtype, max_num_batched_tokens=max_num_batched_tokens, enable_chunked_prefill=enable_chunked_prefill, max_num_seqs=max_num_seqs, ) vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens) assert (vllm_model.model.llm_engine.scheduler.artificial_preempt_cnt < ARTIFICIAL_PREEMPTION_MAX_CNT) del vllm_model for i in range(len(example_prompts)): hf_output_ids, hf_output_str = hf_outputs[i] vllm_output_ids, vllm_output_str = vllm_outputs[i] assert hf_output_str == vllm_output_str, ( f"Test{i}:\nHF: {hf_output_str!r}\nvLLM: {vllm_output_str!r}") assert hf_output_ids == vllm_output_ids, ( f"Test{i}:\nHF: {hf_output_ids}\nvLLM: {vllm_output_ids}") @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("dtype", ["float"]) @pytest.mark.parametrize("max_tokens", [96]) def test_preemption( hf_runner, vllm_runner, example_prompts, model: str, dtype: str, max_tokens: int, ) -> None: """By default, recompute preemption is enabled""" hf_model = hf_runner(model, dtype=dtype) hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens) del hf_model vllm_model = vllm_runner( model, dtype=dtype, ) vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens) assert (vllm_model.model.llm_engine.scheduler.artificial_preempt_cnt < ARTIFICIAL_PREEMPTION_MAX_CNT) del vllm_model for i in range(len(example_prompts)): hf_output_ids, hf_output_str = hf_outputs[i] vllm_output_ids, vllm_output_str = vllm_outputs[i] assert hf_output_str == vllm_output_str, ( f"Test{i}:\nHF: {hf_output_str!r}\nvLLM: {vllm_output_str!r}") assert hf_output_ids == vllm_output_ids, ( f"Test{i}:\nHF: {hf_output_ids}\nvLLM: {vllm_output_ids}") @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("dtype", ["float"]) @pytest.mark.parametrize("max_tokens", [96]) @pytest.mark.parametrize("beam_width", [4]) def test_swap( hf_runner, vllm_runner, example_prompts, model: str, dtype: str, max_tokens: int, beam_width: int, ) -> None: """Use beam search enables swapping.""" example_prompts = example_prompts[:1] hf_model = hf_runner(model, dtype=dtype) hf_outputs = hf_model.generate_beam_search(example_prompts, beam_width, max_tokens) del hf_model vllm_model = vllm_runner(model, dtype=dtype, swap_space=10) vllm_outputs = vllm_model.generate_beam_search(example_prompts, beam_width, max_tokens) assert (vllm_model.model.llm_engine.scheduler.artificial_preempt_cnt < ARTIFICIAL_PREEMPTION_MAX_CNT) del vllm_model for i in range(len(example_prompts)): hf_output_ids, _ = hf_outputs[i] vllm_output_ids, _ = vllm_outputs[i] assert len(hf_output_ids) == len(vllm_output_ids) for j in range(len(hf_output_ids)): assert hf_output_ids[j] == vllm_output_ids[j], ( f"Test{i} output{j}:\nHF: {hf_output_ids}\n" f"vLLM: {vllm_output_ids}") @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("dtype", ["float"]) @pytest.mark.parametrize("max_tokens", [96]) @pytest.mark.parametrize("beam_width", [4]) def test_swap_infeasible( vllm_runner, example_prompts, model: str, dtype: str, max_tokens: int, beam_width: int, ) -> None: """Verify infeasible swap request will be ignored.""" BLOCK_SIZE = 16 prefill_blocks = 2 decode_blocks = max_tokens // BLOCK_SIZE example_prompts = example_prompts[:1] vllm_model = vllm_runner( model, dtype=dtype, swap_space=10, block_size=BLOCK_SIZE, # Since beam search have more than 1 sequence, prefill + decode blocks # are not enough to finish. num_gpu_blocks_override=prefill_blocks + decode_blocks, max_model_len=(prefill_blocks + decode_blocks) * BLOCK_SIZE, ) sampling_params = SamplingParams(n=beam_width, use_beam_search=True, temperature=0.0, max_tokens=max_tokens, ignore_eos=True) req_outputs = vllm_model.model.generate( example_prompts, sampling_params=sampling_params, ) assert (vllm_model.model.llm_engine.scheduler.artificial_preempt_cnt < ARTIFICIAL_PREEMPTION_MAX_CNT) del vllm_model # Verify the request is ignored and not hang. assert req_outputs[0].outputs[0].finish_reason == "length" @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("dtype", ["float"]) @pytest.mark.parametrize("max_tokens", [96]) def test_preemption_infeasible( vllm_runner, example_prompts, model: str, dtype: str, max_tokens: int, ) -> None: """Verify infeasible preemption request will be ignored.""" BLOCK_SIZE = 16 prefill_blocks = 2 decode_blocks = max_tokens // BLOCK_SIZE vllm_model = vllm_runner( model, dtype=dtype, block_size=BLOCK_SIZE, # Not enough gpu blocks to complete a single sequence. # preemption should happen, and the sequence should be # ignored instead of hanging forever. num_gpu_blocks_override=prefill_blocks + decode_blocks // 2, max_model_len=((prefill_blocks + decode_blocks // 2) * BLOCK_SIZE), ) sampling_params = SamplingParams(max_tokens=max_tokens, ignore_eos=True) req_outputs = vllm_model.model.generate( example_prompts, sampling_params=sampling_params, ) assert (vllm_model.model.llm_engine.scheduler.artificial_preempt_cnt < ARTIFICIAL_PREEMPTION_MAX_CNT) del vllm_model # Verify the request is ignored and not hang. for req_output in req_outputs: outputs = req_output.outputs assert len(outputs) == 1 assert outputs[0].finish_reason == "length"