# SPDX-License-Identifier: Apache-2.0 from contextlib import nullcontext from types import MethodType from typing import cast from unittest.mock import MagicMock import numpy as np import pytest from transformers import ProcessorMixin from vllm.config import ModelConfig from vllm.multimodal import MULTIMODAL_REGISTRY # yapf conflicts with isort for this block # yapf: disable from vllm.multimodal.processing import (PlaceholderFeaturesInfo, PromptReplacement, find_mm_placeholders, find_text_matches, find_token_matches, iter_token_matches, replace_text_matches, replace_token_matches) # yapf: enable from vllm.multimodal.profiling import MultiModalProfiler from vllm.multimodal.utils import cached_get_tokenizer from vllm.transformers_utils.tokenizer import AnyTokenizer from vllm.utils import full_groupby from .utils import random_image # yapf: disable @pytest.mark.parametrize( ("token_ids", "match_ids", "expected"), [ ([], [], []), ([], [32000], []), ( [32000, 32000, 32000], [32000], [ { "start_idx": 0, "end_idx": 1 }, { "start_idx": 1, "end_idx": 2 }, { "start_idx": 2, "end_idx": 3 }, ], ), ( [32000, 32000, 32000], [32000, 32000], [{ "start_idx": 0, "end_idx": 2 }], ), ( [32000, 32000, 32000], [32000, 32000, 32000], [{ "start_idx": 0, "end_idx": 3 }], ), ( [9833, 28747, 32000, 32000, 32000, 9833, 28747, 32000, 32000, 918], [28747, 32000], [ { "start_idx": 1, "end_idx": 3 }, { "start_idx": 6, "end_idx": 8 }, ], ), ( [9833, 28747, 32000, 32000, 32000, 9833, 28747, 32000, 32000, 918], [28747, 32000, 32000, 32000], [ { "start_idx": 1, "end_idx": 5 }, ], ), ( [9833, 28747, 32000, 32000, 32000, 9833, 28747, 32000, 32000, 918], [28747, 0, 32000], [], ), ], ) # yapf: enable def test_iter_token_matches(token_ids, match_ids, expected): result = list(iter_token_matches(token_ids, match_ids)) # Manually constructed results assert [item._asdict() for item in result] == expected # Invariants match_lens = [end - start for start, end in result] print("match_lens:", match_lens) # Only displayed on error assert all(match_len == len(match_ids) for match_len in match_lens) # yapf: disable @pytest.mark.parametrize( ("prompt", "target_by_key", "expected_by_key"), [ ( [], { "pattern_1": [], "pattern_2": [32000], }, { "pattern_1": [], "pattern_2": [], } ), ( [32000, 32000, 32000, 32000], { "pattern_1": [32000], "pattern_2": [32000, 32000], "pattern_3": [32000, 32000, 32000], }, { "pattern_1": [ { "start_idx": 0, "end_idx": 1 }, { "start_idx": 1, "end_idx": 2 }, { "start_idx": 2, "end_idx": 3 }, { "start_idx": 3, "end_idx": 4 }, ], "pattern_2": [ { "start_idx": 0, "end_idx": 2 }, { "start_idx": 2, "end_idx": 4 }, ], "pattern_3": [ { "start_idx": 0, "end_idx": 3 }, ], }, ), ( [9833, 28747, 32000, 32000, 32000, 9833, 28747, 32000, 32000, 918], { "pattern_1": [28747, 32000], "pattern_2": [28747, 32000, 32000, 32000], "pattern_3": [28747, 0, 32000], }, { "pattern_1": [ { "start_idx": 1, "end_idx": 3 }, { "start_idx": 6, "end_idx": 8 }, ], "pattern_2": [ { "start_idx": 1, "end_idx": 5 }, ], "pattern_3": [], }, ), ], ) # yapf: enable def test_find_token_matches(prompt, target_by_key, expected_by_key): # Should not be used since there is nothing to convert to token IDs mock_tokenizer = cast(AnyTokenizer, object()) prompt_repls = [ PromptReplacement(key, target, []).bind(mock_tokenizer) for key, target in target_by_key.items() ] result = find_token_matches(prompt, prompt_repls) # Only displayed on error print("result:", result) # Manually constructed results result_groups = dict(full_groupby(result, key=lambda x: x.modality)) assert { key: [ dict(start_idx=item.start_idx, end_idx=item.end_idx) for item in result_groups.get(key, []) ] for key in expected_by_key } == expected_by_key # yapf: disable @pytest.mark.parametrize( ("prompt", "target_by_key", "expected_by_key"), [ # Detokenized test cases of `test_find_token_matches` # using the vocab of llava-hf/llava-v1.6-mistral-7b-hf ( "", { "pattern_1": "", "pattern_2": "", }, { "pattern_1": [{ "start_idx": 0, "end_idx": 0 }], "pattern_2": [], } ), ( "", { "pattern_1": "", "pattern_2": "", "pattern_3": "", }, { "pattern_1": [ { "start_idx": 0, "end_idx": 7 }, { "start_idx": 7, "end_idx": 14 }, { "start_idx": 14, "end_idx": 21 }, { "start_idx": 21, "end_idx": 28 }, ], "pattern_2": [ { "start_idx": 0, "end_idx": 14 }, { "start_idx": 14, "end_idx": 28 }, ], "pattern_3": [ { "start_idx": 0, "end_idx": 21 }, ], }, ), ( "Image:Image:!", { "pattern_1": "Image:", "pattern_2": "Image:", "pattern_3": "Image:", }, { "pattern_1": [ { "start_idx": 0, "end_idx": 13 }, { "start_idx": 27, "end_idx": 40 }, ], "pattern_2": [ { "start_idx": 0, "end_idx": 27 }, ], "pattern_3": [], }, ), # Test regex escape ( "<|image|><|image|>", { "pattern_1": "<|image|>", "pattern_2": "<|image|>", "pattern_3": "<|image|><|image|>", }, { "pattern_1": [ { "start_idx": 0, "end_idx": 9 }, { "start_idx": 16, "end_idx": 25 }, ], "pattern_2": [ { "start_idx": 0, "end_idx": 16 }, { "start_idx": 16, "end_idx": 32 }, ], "pattern_3": [ { "start_idx": 0, "end_idx": 25 }, ], }, ), ], ) # yapf: enable def test_find_text_matches(prompt, target_by_key, expected_by_key): # Should not be used since there is nothing to convert to text mock_tokenizer = cast(AnyTokenizer, object()) prompt_repls = [ PromptReplacement(key, target, []).bind(mock_tokenizer) for key, target in target_by_key.items() ] result = find_text_matches(prompt, prompt_repls) # Only displayed on error print("result:", result) # Manually constructed results result_groups = dict(full_groupby(result, key=lambda x: x.modality)) assert { key: [ dict(start_idx=item.start_idx, end_idx=item.end_idx) for item in result_groups.get(key, []) ] for key in expected_by_key } == expected_by_key # yapf: disable @pytest.mark.parametrize( ("prompt", "target_by_key", "repl_by_key"), [ ( "Image:Image:!", { # We use `` before `Image:` to test matches that # occur out of order "pattern_1": "", "pattern_2": "Image:", "pattern_3": "!", }, { # Test whether target is confused with replacement "pattern_1": "", # Test empty replacement "pattern_2": "", # Test dynamic replacement (beyond the form of `unit * count`) "pattern_3": "?!?", }, ), ] ) @pytest.mark.parametrize( ("mm_count", "expected"), [ (0, "Image:Image:!"), (1, "Image:?!?"), (2, "?!?"), ] ) # yapf: enable def test_find_replace_text( prompt, target_by_key, repl_by_key, mm_count, expected, ): # Should not be used since there is nothing to convert to text mock_tokenizer = cast(AnyTokenizer, object()) mm_prompt_repls = { key: [ PromptReplacement(key, target, repl_by_key[key]).bind(mock_tokenizer) ] for key, target in target_by_key.items() } mm_matches = { key: find_text_matches(prompt, prompt_repls) for key, prompt_repls in mm_prompt_repls.items() } result = replace_text_matches( prompt, mm_matches, {key: mm_count for key in repl_by_key}, ) # Only displayed on error print("mm_matches:", mm_matches) print("result:", result) # Manually constructed results assert result == expected # yapf: disable @pytest.mark.parametrize( ("prompt", "target_by_key", "repl_by_key"), [ # Tokenized test cases of `test_find_replace_text` # using the vocab of llava-hf/llava-v1.6-mistral-7b-hf ( [1, 9833, 28747, 32000, 9833, 28747, 32000, 32000, 918], { # We use `` before `Image:` to test matches that # occur out of order "pattern_1": [32000], "pattern_2": [9833, 28747], "pattern_3": [918], }, { # Test whether target is confused with replacement "pattern_1": [32000, 32000], # Test empty replacement "pattern_2": [], # Test dynamic replacement (beyond the form of `unit * count`) "pattern_3": [1550, 918, 1550], }, ), ] ) @pytest.mark.parametrize( ("mm_count", "expected"), [ (0, [1, 9833, 28747, 32000, 9833, 28747, 32000, 32000, 918]), (1, [1, 32000, 32000, 9833, 28747, 32000, 32000, 1550, 918, 1550]), (2, [1, 32000, 32000, 32000, 32000, 32000, 1550, 918, 1550]), ] ) # yapf: enable def test_find_replace_tokens( prompt, target_by_key, repl_by_key, mm_count, expected, ): # Should not be used since there is nothing to convert to tokens mock_tokenizer = cast(AnyTokenizer, object()) mm_prompt_repls = { key: [ PromptReplacement(key, target, repl_by_key[key]).bind(mock_tokenizer) ] for key, target in target_by_key.items() } mm_matches = { key: find_token_matches(prompt, prompt_repls) for key, prompt_repls in mm_prompt_repls.items() } result = replace_token_matches( prompt, mm_matches, {key: mm_count for key in repl_by_key}, ) # Only displayed on error print("mm_matches:", mm_matches) print("result:", result) # Manually constructed results assert result == expected # yapf: disable @pytest.mark.parametrize( "repl_by_key", [ { "pattern_1": [32000, 32000], "pattern_2": [], "pattern_3": [1550, 918, 1550], # Test different modalities having the same tokens (32000) "pattern_4": [32000], }, ], ) @pytest.mark.parametrize( ("prompt", "expected"), [ ( [1, 9833, 28747, 32000, 9833, 28747, 32000, 32000, 918], { "pattern_1": [ PlaceholderFeaturesInfo( modality="pattern_1", item_idx=0, start_idx=6, tokens=[32000, 32000], ), ], "pattern_4": [ PlaceholderFeaturesInfo( modality="pattern_4", item_idx=0, start_idx=3, tokens=[32000], ), ], } ), ( [1, 32000, 32000, 9833, 28747, 32000, 32000, 1550, 918, 1550], { "pattern_1": [ PlaceholderFeaturesInfo( modality="pattern_1", item_idx=0, start_idx=1, tokens=[32000, 32000], ), PlaceholderFeaturesInfo( modality="pattern_1", item_idx=1, start_idx=5, tokens=[32000, 32000], ), ], "pattern_3": [ PlaceholderFeaturesInfo( modality="pattern_3", item_idx=0, start_idx=7, tokens=[1550, 918, 1550], ), ], # No match for pattern_4 as it has lower priority than pattern_1 } ), ( [1, 32000, 32000, 32000, 32000, 32000, 1550, 918, 1550], { "pattern_1": [ PlaceholderFeaturesInfo( modality="pattern_1", item_idx=0, start_idx=1, tokens=[32000, 32000], ), PlaceholderFeaturesInfo( modality="pattern_1", item_idx=1, start_idx=3, tokens=[32000, 32000], ), ], "pattern_4": [ PlaceholderFeaturesInfo( modality="pattern_4", item_idx=0, start_idx=5, tokens=[32000], ), ], "pattern_3": [ PlaceholderFeaturesInfo( modality="pattern_3", item_idx=0, start_idx=6, tokens=[1550, 918, 1550], ), ], } ), ] ) # yapf: enable def test_find_mm_placeholders( repl_by_key, prompt, expected, ): # Should not be used since there is nothing to convert to tokens mock_tokenizer = cast(AnyTokenizer, object()) mm_prompt_repls = { key: [PromptReplacement(key, [], repl).bind(mock_tokenizer)] for key, repl in repl_by_key.items() } result = find_mm_placeholders( mm_prompt_repls, prompt, # Effectively match all occurrences in the prompt {key: 3 for key in repl_by_key}, ) # Only displayed on error print("result:", result) # Manually constructed results assert result == expected @pytest.mark.parametrize( "model_id", ["s3://vllm-ci-model-weights/llava-v1.6-mistral-7b-hf"]) @pytest.mark.parametrize( ("limit", "num_supported", "is_valid"), [(0, 0, True), (0, 1, True), (1, 0, False), (1, 1, True), (1, 2, True), (2, 1, False), (2, 2, True)], ) def test_limit_mm_per_prompt_dummy(model_id, limit, num_supported, is_valid): limit_mm_per_prompt = {"image": limit} model_config = ModelConfig( model=model_id, task="auto", tokenizer=model_id, tokenizer_mode="auto", trust_remote_code=False, seed=0, dtype="half", revision=None, limit_mm_per_prompt=limit_mm_per_prompt, ) processor = MULTIMODAL_REGISTRY.create_processor( model_config, tokenizer=cached_get_tokenizer(model_config.tokenizer), ) profiler = MultiModalProfiler(processor) mock_supported_mm_limits = MagicMock(return_value={"image": num_supported}) processor.info.get_supported_mm_limits = mock_supported_mm_limits if is_valid: exc_ctx = nullcontext() else: exc_ctx = pytest.raises(ValueError, match="this model only supports") with exc_ctx: profiler.get_dummy_data(model_config.max_model_len) @pytest.mark.parametrize( "model_id", ["s3://vllm-ci-model-weights/llava-v1.6-mistral-7b-hf"]) @pytest.mark.parametrize( ("num_images", "limit", "is_valid"), [(0, 0, True), (0, 1, True), (1, 0, False), (1, 1, True), (1, 2, True), (2, 1, False), (2, 2, True)], ) def test_limit_mm_per_prompt_apply(model_id, num_images, limit, is_valid): limit_mm_per_prompt = {"image": limit} model_config = ModelConfig( model=model_id, task="auto", tokenizer=model_id, tokenizer_mode="auto", trust_remote_code=False, seed=0, dtype="half", revision=None, limit_mm_per_prompt=limit_mm_per_prompt, ) processor = MULTIMODAL_REGISTRY.create_processor( model_config, tokenizer=cached_get_tokenizer(model_config.tokenizer), ) rng = np.random.RandomState(0) image = random_image(rng, min_wh=128, max_wh=256) if num_images == 0: mm_data = {} elif num_images == 1: mm_data = {"image": image} else: mm_data = {"image": [image] * num_images} if is_valid: exc_ctx = nullcontext() else: exc_ctx = pytest.raises(ValueError, match=f"passed {num_images} image") with exc_ctx: processor.apply( "" * num_images, mm_data=mm_data, hf_processor_mm_kwargs={}, ) class _ProcessorProxy: def __init__(self, processor: ProcessorMixin) -> None: super().__init__() self.__processor = processor def __getattr__(self, key: str): return getattr(self.__processor, key) def __call__( self, text=None, images=None, videos=None, exists=None, return_tensors=None, ): return dict(exists=exists) @pytest.mark.parametrize("model_id", ["Qwen/Qwen2-VL-2B-Instruct"]) # Dummy # yapf: disable @pytest.mark.parametrize( ("call_kwargs", "expected_kwargs"), [ # Should ignore invalid kwargs ({"does_not_exist": 100}, {"exists": None}), ({"exists": 1}, {"exists": 1}), ({"does_not_exist": 100, "exists": 1}, {"exists": 1}), ], ) # yapf: enable def test_hf_processor_kwargs(model_id, call_kwargs, expected_kwargs): model_config = ModelConfig( model=model_id, task="auto", tokenizer=model_id, tokenizer_mode="auto", trust_remote_code=False, seed=0, dtype="half", revision=None, ) processor = MULTIMODAL_REGISTRY.create_processor( model_config, tokenizer=cached_get_tokenizer(model_config.tokenizer), ) orig_get_hf_processor = processor.info.get_hf_processor def get_hf_processor(self, **kwargs): assert kwargs == call_kwargs return _ProcessorProxy(orig_get_hf_processor()) processor.info.get_hf_processor = MethodType(get_hf_processor, processor.info) out_kwargs = processor._call_hf_processor( prompt="", mm_data={}, mm_kwargs=call_kwargs, ) assert out_kwargs == expected_kwargs