# SPDX-License-Identifier: Apache-2.0 """Tests register custom quantization config. See https://github.com/vllm-project/vllm/issues/11926 for more details. Run `pytest tests/quantization/test_register_quantization_config.py`. """ from typing import Any, Optional import pytest import torch import torch.nn.functional as F from vllm.model_executor.layers.linear import LinearBase # noqa: E501 from vllm.model_executor.layers.linear import UnquantizedLinearMethod from vllm.model_executor.layers.quantization import ( get_quantization_config, register_quantization_config) from vllm.model_executor.layers.quantization.base_config import ( # noqa: E501 QuantizationConfig) class FakeQuantLinearMethod(UnquantizedLinearMethod): """Fake quantization linear method for per-token dynamic quantization.""" def __init__(self, num_bits: int = 8) -> None: """Initialize the quantization method.""" super().__init__() self.num_bits = num_bits def apply(self, layer: "torch.nn.Module", x: "torch.Tensor", bias: Optional["torch.Tensor"] = None) -> "torch.Tensor": """Perform fake quantization before the linear layer.""" # Calculate the scales dynamically max_val = torch.amax(x, dim=(0, -1), keepdims=True) min_val = torch.amin(x, dim=(0, -1), keepdims=True) scales = (max_val - min_val) / (2**self.num_bits - 1) # Fake quantize the input quant_x = torch.clamp(torch.round(x / scales), -2**(self.num_bits - 1), 2**(self.num_bits - 1) - 1) dequant_x = quant_x * scales return F.linear(dequant_x, layer.weight, bias) @register_quantization_config("custom_quant") class CustomQuantConfig(QuantizationConfig): """Custom quantization config for per-token dynamic fake quantization.""" def __init__(self, num_bits: int = 8) -> None: """Initialize the quantization config.""" self.num_bits = num_bits def get_name(self) -> str: """Name of the quantization method.""" return "custom_quant" def get_supported_act_dtypes(self) -> list["torch.dtype"]: """List of supported activation dtypes.""" return [torch.float16, torch.bfloat16] @classmethod def get_min_capability(cls) -> int: """Minimum GPU capability to support the quantization method.""" return -1 @staticmethod def get_config_filenames() -> list[str]: """List of filenames to search for in the model directory.""" return [] @classmethod def from_config(cls, config: dict[str, Any]) -> "CustomQuantConfig": """Create a config class from the model's quantization config.""" return CustomQuantConfig(num_bits=config.get("num_bits", 8)) def get_quant_method(self, layer: "torch.nn.Module", prefix: str) -> Optional["FakeQuantLinearMethod"]: """Get the quantize method to use for the quantized layer.""" if isinstance(layer, LinearBase): return FakeQuantLinearMethod(num_bits=self.num_bits) return None def test_register_quantization_config(): """Test register custom quantization config.""" # The quantization method `custom_quant` should be registered. assert get_quantization_config("custom_quant") == CustomQuantConfig # The quantization method `custom_quant` is already exists, # should raise an error. with pytest.raises(ValueError): register_quantization_config("custom_quant")(CustomQuantConfig) @pytest.mark.parametrize(argnames="model", argvalues=[ "meta-llama/Llama-3.2-1B-Instruct", ]) def test_custom_quant(vllm_runner, model, monkeypatch): """Test infer with the custom quantization method.""" # vllm_runner.apply_model() relies on V0 internals. monkeypatch.setenv("VLLM_USE_V1", "0") with vllm_runner(model_name=model, quantization="custom_quant", enforce_eager=True) as llm: model = llm.model.llm_engine.model_executor.driver_worker.model_runner.model # noqa: E501 layer = model.model.layers[0] qkv_proj = layer.self_attn.qkv_proj # Check the quantization method is FakeQuantLinearMethod assert isinstance(qkv_proj.quant_method, FakeQuantLinearMethod) output = llm.generate_greedy("Hello my name is", max_tokens=20) assert output