# SPDX-License-Identifier: Apache-2.0 """Compare the classification outputs of HF and vLLM models. Run `pytest tests/models/test_cls_models.py`. """ import pytest import torch from transformers import AutoModelForSequenceClassification from vllm.platforms import current_platform @pytest.mark.parametrize( "model", [ pytest.param("jason9693/Qwen2.5-1.5B-apeach", marks=[pytest.mark.core_model, pytest.mark.cpu_model]), ], ) @pytest.mark.parametrize("dtype", ["half"] if current_platform.is_rocm() else ["float"]) def test_classification_models( hf_runner, vllm_runner, example_prompts, model: str, dtype: str, monkeypatch, ) -> None: if current_platform.is_rocm(): # ROCm Triton FA does not currently support sliding window attention # switch to use ROCm CK FA backend monkeypatch.setenv("VLLM_USE_TRITON_FLASH_ATTN", "False") with vllm_runner(model, dtype=dtype) as vllm_model: vllm_outputs = vllm_model.classify(example_prompts) with hf_runner(model, dtype=dtype, auto_cls=AutoModelForSequenceClassification) as hf_model: hf_outputs = hf_model.classify(example_prompts) # check logits difference for hf_output, vllm_output in zip(hf_outputs, vllm_outputs): hf_output = torch.tensor(hf_output) vllm_output = torch.tensor(vllm_output) # the tolerance value of 1e-2 is selected based on the # half datatype tests in # tests/models/embedding/language/test_embedding.py assert torch.allclose(hf_output, vllm_output, 1e-3 if dtype == "float" else 1e-2)