# SPDX-License-Identifier: Apache-2.0 import json import subprocess import sys import tempfile from vllm.entrypoints.openai.protocol import BatchRequestOutput # ruff: noqa: E501 INPUT_BATCH = """{"custom_id": "request-1", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "NousResearch/Meta-Llama-3-8B-Instruct", "messages": [{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}} {"custom_id": "request-2", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "NousResearch/Meta-Llama-3-8B-Instruct", "messages": [{"role": "system", "content": "You are an unhelpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}} {"custom_id": "request-3", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "NonExistModel", "messages": [{"role": "system", "content": "You are an unhelpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}} {"custom_id": "request-4", "method": "POST", "url": "/bad_url", "body": {"model": "NousResearch/Meta-Llama-3-8B-Instruct", "messages": [{"role": "system", "content": "You are an unhelpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}} {"custom_id": "request-5", "method": "POST", "url": "/v1/chat/completions", "body": {"stream": "True", "model": "NousResearch/Meta-Llama-3-8B-Instruct", "messages": [{"role": "system", "content": "You are an unhelpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}}""" INVALID_INPUT_BATCH = """{"invalid_field": "request-1", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "NousResearch/Meta-Llama-3-8B-Instruct", "messages": [{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}} {"custom_id": "request-2", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "NousResearch/Meta-Llama-3-8B-Instruct", "messages": [{"role": "system", "content": "You are an unhelpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}}""" INPUT_EMBEDDING_BATCH = """{"custom_id": "request-1", "method": "POST", "url": "/v1/embeddings", "body": {"model": "intfloat/multilingual-e5-small", "input": "You are a helpful assistant."}} {"custom_id": "request-2", "method": "POST", "url": "/v1/embeddings", "body": {"model": "intfloat/multilingual-e5-small", "input": "You are an unhelpful assistant."}} {"custom_id": "request-3", "method": "POST", "url": "/v1/embeddings", "body": {"model": "intfloat/multilingual-e5-small", "input": "Hello world!"}} {"custom_id": "request-4", "method": "POST", "url": "/v1/embeddings", "body": {"model": "NonExistModel", "input": "Hello world!"}}""" INPUT_SCORE_BATCH = """{"custom_id": "request-1", "method": "POST", "url": "/v1/score", "body": {"model": "BAAI/bge-reranker-v2-m3", "text_1": "What is the capital of France?", "text_2": ["The capital of Brazil is Brasilia.", "The capital of France is Paris."]}} {"custom_id": "request-2", "method": "POST", "url": "/v1/score", "body": {"model": "BAAI/bge-reranker-v2-m3", "text_1": "What is the capital of France?", "text_2": ["The capital of Brazil is Brasilia.", "The capital of France is Paris."]}}""" def test_empty_file(): with tempfile.NamedTemporaryFile( "w") as input_file, tempfile.NamedTemporaryFile( "r") as output_file: input_file.write("") input_file.flush() proc = subprocess.Popen([ sys.executable, "-m", "vllm.entrypoints.openai.run_batch", "-i", input_file.name, "-o", output_file.name, "--model", "intfloat/multilingual-e5-small" ], ) proc.communicate() proc.wait() assert proc.returncode == 0, f"{proc=}" contents = output_file.read() assert contents.strip() == "" def test_completions(): with tempfile.NamedTemporaryFile( "w") as input_file, tempfile.NamedTemporaryFile( "r") as output_file: input_file.write(INPUT_BATCH) input_file.flush() proc = subprocess.Popen([ sys.executable, "-m", "vllm.entrypoints.openai.run_batch", "-i", input_file.name, "-o", output_file.name, "--model", "NousResearch/Meta-Llama-3-8B-Instruct" ], ) proc.communicate() proc.wait() assert proc.returncode == 0, f"{proc=}" contents = output_file.read() for line in contents.strip().split("\n"): # Ensure that the output format conforms to the openai api. # Validation should throw if the schema is wrong. BatchRequestOutput.model_validate_json(line) def test_completions_invalid_input(): """ Ensure that we fail when the input doesn't conform to the openai api. """ with tempfile.NamedTemporaryFile( "w") as input_file, tempfile.NamedTemporaryFile( "r") as output_file: input_file.write(INVALID_INPUT_BATCH) input_file.flush() proc = subprocess.Popen([ sys.executable, "-m", "vllm.entrypoints.openai.run_batch", "-i", input_file.name, "-o", output_file.name, "--model", "NousResearch/Meta-Llama-3-8B-Instruct" ], ) proc.communicate() proc.wait() assert proc.returncode != 0, f"{proc=}" def test_embeddings(): with tempfile.NamedTemporaryFile( "w") as input_file, tempfile.NamedTemporaryFile( "r") as output_file: input_file.write(INPUT_EMBEDDING_BATCH) input_file.flush() proc = subprocess.Popen([ sys.executable, "-m", "vllm.entrypoints.openai.run_batch", "-i", input_file.name, "-o", output_file.name, "--model", "intfloat/multilingual-e5-small" ], ) proc.communicate() proc.wait() assert proc.returncode == 0, f"{proc=}" contents = output_file.read() for line in contents.strip().split("\n"): # Ensure that the output format conforms to the openai api. # Validation should throw if the schema is wrong. BatchRequestOutput.model_validate_json(line) def test_score(): with tempfile.NamedTemporaryFile( "w") as input_file, tempfile.NamedTemporaryFile( "r") as output_file: input_file.write(INPUT_SCORE_BATCH) input_file.flush() proc = subprocess.Popen([ sys.executable, "-m", "vllm.entrypoints.openai.run_batch", "-i", input_file.name, "-o", output_file.name, "--model", "BAAI/bge-reranker-v2-m3", ], ) proc.communicate() proc.wait() assert proc.returncode == 0, f"{proc=}" contents = output_file.read() for line in contents.strip().split("\n"): # Ensure that the output format conforms to the openai api. # Validation should throw if the schema is wrong. BatchRequestOutput.model_validate_json(line) # Ensure that there is no error in the response. line_dict = json.loads(line) assert isinstance(line_dict, dict) assert line_dict["error"] is None