# SPDX-License-Identifier: Apache-2.0 import pytest import torch import vllm from vllm.lora.request import LoRARequest from vllm.platforms import current_platform MODEL_PATH = "mistralai/Mixtral-8x7B-Instruct-v0.1" def do_sample(llm: vllm.LLM, lora_path: str, lora_id: int, prompts: list[str]) -> list[str]: sampling_params = vllm.SamplingParams(temperature=0, max_tokens=256) outputs = llm.generate( prompts, sampling_params, lora_request=LoRARequest(str(lora_id), lora_id, lora_path) if lora_id else None) # Print the outputs. generated_texts: list[str] = [] for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text.strip() generated_texts.append(generated_text) print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") return generated_texts @pytest.mark.parametrize("tp_size", [4]) def test_mixtral_lora(mixtral_lora_files, tp_size): """Original test, the LoRA model has the common target modules, not all""" if torch.cuda.device_count( ) < tp_size and tp_size > 1 and current_platform.is_cuda_alike(): pytest.skip(f"Not enough GPUs for tensor parallelism {tp_size}") prompts = [ "[system] Given a target sentence construct the underlying meaning representation\nof the input sentence as a single function with attributes and attribute\nvalues. This function should describe the target string accurately and the\nfunction must be one of the following ['inform', 'request', 'give_opinion',\n'confirm', 'verify_attribute', 'suggest', 'request_explanation',\n'recommend', 'request_attribute'].\n\nThe attributes must be one of the following:\n['name', 'exp_release_date', 'release_year', 'developer', 'esrb', 'rating',\n'genres', 'player_perspective', 'has_multiplayer', 'platforms',\n'available_on_steam', 'has_linux_release', 'has_mac_release', 'specifier'] [/system] [user] Here is the target sentence:\nSpellForce 3 is a pretty bad game. The developer Grimlore Games is clearly a bunch of no-talent hacks, and 2017 was a terrible year for games anyway. [/user] [assistant]", # noqa: E501 "[system] Given a target sentence construct the underlying meaning representation\nof the input sentence as a single function with attributes and attribute\nvalues. This function should describe the target string accurately and the\nfunction must be one of the following ['inform', 'request', 'give_opinion',\n'confirm', 'verify_attribute', 'suggest', 'request_explanation',\n'recommend', 'request_attribute'].\n\nThe attributes must be one of the following:\n['name', 'exp_release_date', 'release_year', 'developer', 'esrb', 'rating',\n'genres', 'player_perspective', 'has_multiplayer', 'platforms',\n'available_on_steam', 'has_linux_release', 'has_mac_release', 'specifier'] [/system] [user] Here is the target sentence:\nI wanted to like Grimlore Games' 2017 entry, but in SpellForce 3 they just didn't get anything right. [/user] [assistant]", # noqa: E501 "[system] Given a target sentence construct the underlying meaning representation\nof the input sentence as a single function with attributes and attribute\nvalues. This function should describe the target string accurately and the\nfunction must be one of the following ['inform', 'request', 'give_opinion',\n'confirm', 'verify_attribute', 'suggest', 'request_explanation',\n'recommend', 'request_attribute'].\n\nThe attributes must be one of the following:\n['name', 'exp_release_date', 'release_year', 'developer', 'esrb', 'rating',\n'genres', 'player_perspective', 'has_multiplayer', 'platforms',\n'available_on_steam', 'has_linux_release', 'has_mac_release', 'specifier'] [/system] [user] Here is the target sentence:\nBioShock is a good role-playing, action-adventure, shooter that released for PlayStation, Xbox, and PC in 2007. It is available on Steam, and it has a Mac release but not a Linux release. [/user] [assistant]", # noqa: E501 ] llm = vllm.LLM( MODEL_PATH, enable_lora=True, max_num_seqs=16, max_loras=4, distributed_executor_backend="ray", tensor_parallel_size=tp_size, enable_chunked_prefill=True, ) expected_lora_output = [ "give_opinion(name[SpellForce 3], release_year[2017], developer[Grimlore Games], rating[poor])", # noqa: E501 "give_opinion(name[SpellForce 3], developer[Grimlore Games], release_year[2017], rating[poor])", # noqa: E501 "inform(name[BioShock], release_year[2007], rating[good], genres[action-adventure, role-playing, shooter], platforms[PlayStation, Xbox, PC], available_on_steam[yes], has_linux_release[no], has_mac_release[yes])", # noqa: E501 ] assert do_sample(llm, mixtral_lora_files, lora_id=1, prompts=prompts) == expected_lora_output assert do_sample(llm, mixtral_lora_files, lora_id=2, prompts=prompts) == expected_lora_output @pytest.mark.parametrize("tp_size", [4]) @pytest.mark.parametrize("fully_shard", [True, False]) def test_mixtral_lora_all_target_modules(mixtral_lora_files_all_target_modules, tp_size, fully_shard): """This LoRA model has all supported Mixtral target modules""" if torch.cuda.device_count() < tp_size: pytest.skip(f"Not enough GPUs for tensor parallelism {tp_size}") prompts = [ "Question: What happens if you touch the eyes of a blind man?\nChoices:\nB: The man's sight will be restored.\nA: Nothing happens if you touch the eyes of a blind man.\nC: The man will get his eyesight back.\nD: The man will no longer be blind.\nAnswer:", # noqa: E501 "Question: Which will increase the energy of motion of water molecules?\nChoices:\nA: add heat\nB: add ice\nC: remove some of the water\nD: place the water in the freezer\nAnswer:", # noqa: E501 "Since Craig threw aluminum cans in the trash and Benjamin recycled, _ was environmentally irresponsible.\nChoices:\n1: Craig\n2: Benjamin\nAnswer:", # noqa: E501 ] llm = vllm.LLM( MODEL_PATH, enable_lora=True, max_num_seqs=16, max_loras=4, distributed_executor_backend="ray", tensor_parallel_size=tp_size, fully_sharded_loras=fully_shard, max_lora_rank=32, ) expected_lora_output = [ "A: Nothing happens if you touch the eyes of a blind man.", "A: add heat", "1: Craig", ] assert do_sample(llm, mixtral_lora_files_all_target_modules, lora_id=1, prompts=prompts) == expected_lora_output assert do_sample(llm, mixtral_lora_files_all_target_modules, lora_id=2, prompts=prompts) == expected_lora_output