# SPDX-License-Identifier: Apache-2.0 import asyncio import time from pathlib import Path import pytest from huggingface_hub import snapshot_download import vllm.envs as env from vllm.engine.arg_utils import AsyncEngineArgs from vllm.inputs import TextPrompt from vllm.lora.request import LoRARequest from vllm.sampling_params import SamplingParams from vllm.utils import merge_async_iterators MODEL_PATH = "meta-llama/Llama-2-7b-hf" LORA_MODULE_DOWNLOAD_PATH = None # Populated by download_and_prepare_lora_module() #noqa LORA_RANK = 8 DEFAULT_MAX_LORAS = 16 * 3 def download_and_prepare_lora_module(): """ Request submission is expensive when the LoRA adapters have their own tokenizers. This is because, for each request with a new LoRA adapter ID, the front-end loads the tokenizer from disk. In this test, as we are comparing request processing times, we want to minimize any extra activity. To this effect, we download the LoRA adapter and remove all the tokenizer files, so the engine will default to the base model tokenizer. """ global LORA_MODULE_DOWNLOAD_PATH LORA_MODULE_HF_PATH = "yard1/llama-2-7b-sql-lora-test" LORA_MODULE_DOWNLOAD_PATH = snapshot_download(repo_id=LORA_MODULE_HF_PATH) tokenizer_files = [ 'added_tokens.json', 'tokenizer_config.json', 'tokenizer.json', 'tokenizer.model' ] for tokenizer_file in tokenizer_files: del_path = Path(LORA_MODULE_DOWNLOAD_PATH) / tokenizer_file del_path.unlink(missing_ok=True) @pytest.fixture(autouse=True) def v1(run_with_both_engines_lora): # Simple autouse wrapper to run both engines for each test # This can be promoted up to conftest.py to run for every # test in a package pass def get_lora_requests() -> list[LoRARequest]: lora_requests: list[LoRARequest] = [ LoRARequest(lora_name=f"{i}", lora_int_id=i, lora_path=LORA_MODULE_DOWNLOAD_PATH) for i in range(1, DEFAULT_MAX_LORAS + 1) ] return lora_requests async def requests_processing_time(llm, lora_requests: list[LoRARequest]) -> float: sampling_params = SamplingParams(n=1, temperature=0.0, top_p=1.0, ignore_eos=True, max_tokens=1) generators = [] start = time.perf_counter() for lora_request in lora_requests: lora_int_id = lora_request.lora_int_id generator = llm.generate( prompt=TextPrompt(prompt=f"hello {lora_int_id}", multi_modal_data=None), # type: ignore sampling_params=sampling_params, lora_request=lora_request, request_id=f"test{lora_int_id}") generators.append(generator) all_gens = merge_async_iterators(*generators) async for i, res in all_gens: pass end = time.perf_counter() return end - start @pytest.mark.asyncio async def test_add_lora(): """ The add_lora function is used to pre-load some LoRA adapters into the engine in anticipation of future requests using these adapters. To test this functionality, we use the async engine to process some requests - We do it twice, once with add_lora() pre-loading and once without. We measure the request processing time in both cases and expect the time to be lesser in the case with add_lora() calls. """ download_and_prepare_lora_module() lora_requests: list[LoRARequest] = get_lora_requests() max_loras = len(set([lr.lora_int_id for lr in lora_requests])) # Create engine in eager-mode. Due to high max_loras, the CI can # OOM during cuda-graph capture. engine_args = AsyncEngineArgs( model=MODEL_PATH, enable_lora=True, max_loras=max_loras, max_lora_rank=LORA_RANK, max_model_len=128, gpu_memory_utilization=0.8, #avoid OOM enforce_eager=True) # The run_with_both_engines_lora fixture sets up the `VLLM_USE_V1` # environment variable. reload vllm.enging.async_llm_engine as # vllm.engine.async_llm_engine.AsyncLLMEgnine changes depending on the # env var. import importlib import vllm.engine.async_llm_engine importlib.reload(vllm.engine.async_llm_engine) from vllm.entrypoints.openai.api_server import ( build_async_engine_client_from_engine_args) # split lora_requests into 3 parts part_size = len(lora_requests) // 3 dummy_run_requests = lora_requests[:part_size] warmup_run_requests = lora_requests[part_size:part_size * 2] cold_run_requests = lora_requests[part_size * 2:] async with build_async_engine_client_from_engine_args(engine_args) as llm: # Dummy run - So any 1-time functionality like triton kernel compilation # is complete here. await requests_processing_time(llm, dummy_run_requests) # Run with warmup add_lora_tasks = [llm.add_lora(lr) for lr in warmup_run_requests] add_lora_results = await asyncio.gather(*add_lora_tasks) if env.VLLM_USE_V1: # Test that all all_lora calls are successful. assert all(add_lora_results) else: # No way to check V0 engine results as the calls just return None. pass time_with_add_lora = await requests_processing_time( llm, warmup_run_requests) # Run without any warmup time_cold_start = await requests_processing_time( llm, cold_run_requests) print(f"time hot-start {time_with_add_lora} vs " f"time cold-start {time_cold_start} ") assert time_with_add_lora < time_cold_start, ( f"time_with_add_lora={time_with_add_lora}, " f"time_cold_start={time_cold_start}" "The engine request processing time with LoRA pre-loading " "must be less than the version that does on-demand LoRA loading.")