# SPDX-License-Identifier: Apache-2.0 """ Test the piecewise compilation with a simple model so that we can exactly calculate the expected output and side effects. """ import torch from torch import nn from torch.library import Library from vllm.compilation.counter import compilation_counter from vllm.compilation.decorators import support_torch_compile from vllm.config import (CompilationConfig, CompilationLevel, VllmConfig, set_current_vllm_config) from vllm.utils import direct_register_custom_op global_counter = 0 # create a library to hold the custom op silly_lib = Library("silly", "FRAGMENT") # noqa def silly_attention(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, out: torch.Tensor) -> None: global global_counter global_counter += 1 print(f"{global_counter=}") out.copy_(q) out[0] += 1 def silly_attention_fake(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, out: torch.Tensor) -> None: return direct_register_custom_op( op_name="attention", op_func=silly_attention, mutates_args=["out"], fake_impl=silly_attention_fake, target_lib=silly_lib, ) @support_torch_compile class SillyModel(nn.Module): def __init__(self, *, vllm_config: VllmConfig, prefix: str = '', **kwargs) -> None: super().__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Overall effect: x += 1 x[0] += 2 global_counter += 2 """ x = x + 1 x = x + 2 out = torch.empty_like(x) torch.ops.silly.attention(x, x, x, out) x = out x = x - 2 x = x - 1 out = torch.empty_like(x) torch.ops.silly.attention(x, x, x, out) x = out x = x + 1 return x def test_simple_piecewise_compile(): vllm_config = VllmConfig(compilation_config=CompilationConfig( level=CompilationLevel.PIECEWISE, use_cudagraph=True, splitting_ops=["silly.attention"], cudagraph_copy_inputs=True, cudagraph_capture_sizes=[1, 2], )) with set_current_vllm_config(vllm_config): model = SillyModel(vllm_config=vllm_config, prefix='') inputs = torch.randn(100).cuda() with compilation_counter.expect( num_graphs_seen=1, # one graph for the model num_piecewise_graphs_seen=5, # 2 * num_layers + 1 num_piecewise_capturable_graphs_seen=3, # 1 + num_layers num_backend_compilations=3, # num_piecewise_capturable_graphs_seen num_cudagraph_caputured= 6, # num_cudagraph_sizes * num_piecewise_capturable_graphs_seen ): model(inputs) model(torch.randn(2).cuda()) model(torch.randn(1).cuda()) input = torch.zeros(2).cuda() global global_counter global_counter = 0 output = model(input) assert global_counter == 2 assert torch.allclose(output.cpu(), torch.tensor([3., 1.]))