""" This example shows how to use LoRA with different quantization techniques for offline inference. Requires HuggingFace credentials for access. """ import gc from typing import List, Optional, Tuple import torch from huggingface_hub import snapshot_download from vllm import EngineArgs, LLMEngine, RequestOutput, SamplingParams from vllm.lora.request import LoRARequest def create_test_prompts( lora_path: str ) -> List[Tuple[str, SamplingParams, Optional[LoRARequest]]]: return [ # this is an example of using quantization without LoRA ("My name is", SamplingParams(temperature=0.0, logprobs=1, prompt_logprobs=1, max_tokens=128), None), # the next three examples use quantization with LoRA ("my name is", SamplingParams(temperature=0.0, logprobs=1, prompt_logprobs=1, max_tokens=128), LoRARequest("lora-test-1", 1, lora_path)), ("The capital of USA is", SamplingParams(temperature=0.0, logprobs=1, prompt_logprobs=1, max_tokens=128), LoRARequest("lora-test-2", 1, lora_path)), ("The capital of France is", SamplingParams(temperature=0.0, logprobs=1, prompt_logprobs=1, max_tokens=128), LoRARequest("lora-test-3", 1, lora_path)), ] def process_requests(engine: LLMEngine, test_prompts: List[Tuple[str, SamplingParams, Optional[LoRARequest]]]): """Continuously process a list of prompts and handle the outputs.""" request_id = 0 while test_prompts or engine.has_unfinished_requests(): if test_prompts: prompt, sampling_params, lora_request = test_prompts.pop(0) engine.add_request(str(request_id), prompt, sampling_params, lora_request=lora_request) request_id += 1 request_outputs: List[RequestOutput] = engine.step() for request_output in request_outputs: if request_output.finished: print("----------------------------------------------------") print(f"Prompt: {request_output.prompt}") print(f"Output: {request_output.outputs[0].text}") def initialize_engine(model: str, quantization: str, lora_repo: Optional[str]) -> LLMEngine: """Initialize the LLMEngine.""" if quantization == "bitsandbytes": # QLoRA (https://arxiv.org/abs/2305.14314) is a quantization technique. # It quantizes the model when loading, with some config info from the # LoRA adapter repo. So need to set the parameter of load_format and # qlora_adapter_name_or_path as below. engine_args = EngineArgs( model=model, quantization=quantization, qlora_adapter_name_or_path=lora_repo, load_format="bitsandbytes", enable_lora=True, max_lora_rank=64, # set it only in GPUs of limited memory enforce_eager=True) else: engine_args = EngineArgs( model=model, quantization=quantization, enable_lora=True, max_loras=4, # set it only in GPUs of limited memory enforce_eager=True) return LLMEngine.from_engine_args(engine_args) def main(): """Main function that sets up and runs the prompt processing.""" test_configs = [{ "name": "qlora_inference_example", 'model': "huggyllama/llama-7b", 'quantization': "bitsandbytes", 'lora_repo': 'timdettmers/qlora-flan-7b' }, { "name": "AWQ_inference_with_lora_example", 'model': 'TheBloke/TinyLlama-1.1B-Chat-v0.3-AWQ', 'quantization': "awq", 'lora_repo': 'jashing/tinyllama-colorist-lora' }, { "name": "GPTQ_inference_with_lora_example", 'model': 'TheBloke/TinyLlama-1.1B-Chat-v0.3-GPTQ', 'quantization': "gptq", 'lora_repo': 'jashing/tinyllama-colorist-lora' }] for test_config in test_configs: print( f"~~~~~~~~~~~~~~~~ Running: {test_config['name']} ~~~~~~~~~~~~~~~~" ) engine = initialize_engine(test_config['model'], test_config['quantization'], test_config['lora_repo']) lora_path = snapshot_download(repo_id=test_config['lora_repo']) test_prompts = create_test_prompts(lora_path) process_requests(engine, test_prompts) # Clean up the GPU memory for the next test del engine gc.collect() torch.cuda.empty_cache() if __name__ == '__main__': main()