import pytest import torch from vllm._C import ops DTYPES = [torch.half, torch.bfloat16, torch.float] HIDDEN_SIZES = [16, 67, 768, 2048, 5120, 8192] # Arbitrary values for testing NUM_TOKENS = [1, 7, 83, 4096] # Arbitrary values for testing SEEDS = [0] SCALE = [0.1, 0.5, 0.8, 1.2, 2.1] @pytest.mark.parametrize("num_tokens", NUM_TOKENS) @pytest.mark.parametrize("hidden_size", HIDDEN_SIZES) @pytest.mark.parametrize("dtype", DTYPES) @pytest.mark.parametrize("seed", SEEDS) @pytest.mark.parametrize("scale", SCALE) @torch.inference_mode() def test_quant(num_tokens: int, hidden_size: int, dtype: torch.dtype, seed: int, scale: float) -> None: torch.random.manual_seed(seed) torch.cuda.manual_seed(seed) x = torch.rand(num_tokens, hidden_size, dtype=dtype, device="cuda") * 1000 out1 = (x / scale).round().clamp( torch.iinfo(torch.int8).min, torch.iinfo(torch.int8).max).to(torch.int8) out2 = torch.empty_like(x, dtype=torch.int8) scale_argument = torch.tensor([scale], dtype=torch.float32, device="cuda") ops.static_scaled_int8_quant(out2, x, scale_argument) assert torch.allclose(out1, out2, atol=1) # big atol to account for rounding errors