import base64 import mimetypes import os from tempfile import NamedTemporaryFile, TemporaryDirectory from typing import Dict, Tuple import numpy as np import pytest from PIL import Image, ImageChops from transformers import AutoConfig, AutoTokenizer from vllm.multimodal.utils import (async_fetch_image, fetch_image, repeat_and_pad_placeholder_tokens) # Test different image extensions (JPG/PNG) and formats (gray/RGB/RGBA) TEST_IMAGE_URLS = [ "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg", "https://upload.wikimedia.org/wikipedia/commons/f/fa/Grayscale_8bits_palette_sample_image.png", "https://upload.wikimedia.org/wikipedia/commons/thumb/9/91/Venn_diagram_rgb.svg/1280px-Venn_diagram_rgb.svg.png", "https://upload.wikimedia.org/wikipedia/commons/0/0b/RGBA_comp.png", ] @pytest.fixture(scope="module") def url_images() -> Dict[str, Image.Image]: return {image_url: fetch_image(image_url) for image_url in TEST_IMAGE_URLS} def get_supported_suffixes() -> Tuple[str, ...]: # We should at least test the file types mentioned in GPT-4 with Vision OPENAI_SUPPORTED_SUFFIXES = ('.png', '.jpeg', '.jpg', '.webp', '.gif') # Additional file types that are supported by us EXTRA_SUPPORTED_SUFFIXES = ('.bmp', '.tiff') return OPENAI_SUPPORTED_SUFFIXES + EXTRA_SUPPORTED_SUFFIXES def _image_equals(a: Image.Image, b: Image.Image) -> bool: return (np.asarray(a) == np.asarray(b.convert(a.mode))).all() @pytest.mark.asyncio @pytest.mark.parametrize("image_url", TEST_IMAGE_URLS) async def test_fetch_image_http(image_url: str): image_sync = fetch_image(image_url) image_async = await async_fetch_image(image_url) assert _image_equals(image_sync, image_async) @pytest.mark.asyncio @pytest.mark.parametrize("image_url", TEST_IMAGE_URLS) @pytest.mark.parametrize("suffix", get_supported_suffixes()) async def test_fetch_image_base64(url_images: Dict[str, Image.Image], image_url: str, suffix: str): url_image = url_images[image_url] try: mime_type = Image.MIME[Image.registered_extensions()[suffix]] except KeyError: try: mime_type = mimetypes.types_map[suffix] except KeyError: pytest.skip('No MIME type') with NamedTemporaryFile(suffix=suffix) as f: try: url_image.save(f.name) except Exception as e: if e.args[0] == 'cannot write mode RGBA as JPEG': pytest.skip('Conversion not supported') raise base64_image = base64.b64encode(f.read()).decode("utf-8") data_url = f"data:{mime_type};base64,{base64_image}" data_image_sync = fetch_image(data_url) if _image_equals(url_image, Image.open(f)): assert _image_equals(url_image, data_image_sync) else: pass # Lossy format; only check that image can be opened data_image_async = await async_fetch_image(data_url) assert _image_equals(data_image_sync, data_image_async) @pytest.mark.asyncio @pytest.mark.parametrize("image_url", TEST_IMAGE_URLS) async def test_fetch_image_local_files(image_url: str): with TemporaryDirectory() as temp_dir: origin_image = fetch_image(image_url) origin_image.save(os.path.join(temp_dir, os.path.basename(image_url)), quality=100, icc_profile=origin_image.info.get('icc_profile')) image_async = await async_fetch_image( f"file://{temp_dir}/{os.path.basename(image_url)}", allowed_local_media_path=temp_dir) image_sync = fetch_image( f"file://{temp_dir}/{os.path.basename(image_url)}", allowed_local_media_path=temp_dir) # Check that the images are equal assert not ImageChops.difference(image_sync, image_async).getbbox() with pytest.raises(ValueError): await async_fetch_image( f"file://{temp_dir}/../{os.path.basename(image_url)}", allowed_local_media_path=temp_dir) with pytest.raises(ValueError): await async_fetch_image( f"file://{temp_dir}/../{os.path.basename(image_url)}") with pytest.raises(ValueError): fetch_image(f"file://{temp_dir}/../{os.path.basename(image_url)}", allowed_local_media_path=temp_dir) with pytest.raises(ValueError): fetch_image(f"file://{temp_dir}/../{os.path.basename(image_url)}") @pytest.mark.parametrize("model", ["llava-hf/llava-v1.6-mistral-7b-hf"]) def test_repeat_and_pad_placeholder_tokens(model): config = AutoConfig.from_pretrained(model) image_token_id = config.image_token_index tokenizer = AutoTokenizer.from_pretrained(model) test_cases = [ ( "", 2, "", [32000, 32000], [{ "offset": 0, "length": 2 }], ), ( "", 2, "", [32000, 32000, 32000], [{ "offset": 0, "length": 2 }], ), ( "", [3, 2], "", [32000, 32000, 32000, 32000, 32000], [{ "offset": 0, "length": 3 }, { "offset": 3, "length": 2 }], ), ( "Image:Image:!", [3, 2], "Image:Image:!", [9833, 28747, 32000, 32000, 32000, 9833, 28747, 32000, 32000, 918], [{ "offset": 2, "length": 3 }, { "offset": 7, "length": 2 }], ), ( "", [3, 2], "", [32000, 32000, 32000], [{ "offset": 0, "length": 3 }], ), ] # yapf: disable for ( prompt, repeat_count, expected_prompt, expected_token_ids, expected_ranges, ) in test_cases: new_prompt, new_token_ids, ranges = repeat_and_pad_placeholder_tokens( tokenizer=tokenizer, prompt=prompt, prompt_token_ids=tokenizer.encode(prompt, add_special_tokens=False), placeholder_token_id=image_token_id, repeat_count=repeat_count, ) assert new_prompt == expected_prompt assert new_token_ids == expected_token_ids assert ranges == expected_ranges