import subprocess import sys import tempfile import time from http import HTTPStatus import openai import pytest import pytest_asyncio import requests from prometheus_client.parser import text_string_to_metric_families from transformers import AutoTokenizer from ...utils import RemoteOpenAIServer MODEL_NAME = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" @pytest.fixture(scope="module", params=[True, False]) def use_v1(request): # Module-scoped variant of run_with_both_engines # # Use this fixture to run a test with both v0 and v1, and # also to conditionalize the test logic e.g. # # def test_metrics_exist(use_v1, server, client): # ... # expected = EXPECTED_V1_METRICS if use_v1 else EXPECTED_METRICS # for metric in expected: # assert metric in response.text # # @skip_v1 wouldn't work here because this is a module-level # fixture - per-function decorators would have no effect yield request.param @pytest.fixture(scope="module") def default_server_args(): return [ # use half precision for speed and memory savings in CI environment "--dtype", "bfloat16", "--max-model-len", "1024", "--enforce-eager", "--max-num-seqs", "128", ] @pytest.fixture(scope="module", params=[ "", "--enable-chunked-prefill", "--disable-frontend-multiprocessing", ]) def server(use_v1, default_server_args, request): if request.param: default_server_args.append(request.param) env_dict = dict(VLLM_USE_V1='1' if use_v1 else '0') with RemoteOpenAIServer(MODEL_NAME, default_server_args, env_dict=env_dict) as remote_server: yield remote_server @pytest_asyncio.fixture async def client(server): async with server.get_async_client() as cl: yield cl _PROMPT = "Hello my name is Robert and I love magic" tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) _TOKENIZED_PROMPT = tokenizer(_PROMPT)["input_ids"] _NUM_REQUESTS = 10 _NUM_PROMPT_TOKENS_PER_REQUEST = len(_TOKENIZED_PROMPT) _NUM_GENERATION_TOKENS_PER_REQUEST = 10 # {metric_family: [(suffix, expected_value)]} EXPECTED_VALUES = { "vllm:time_to_first_token_seconds": [("_count", _NUM_REQUESTS)], "vllm:time_per_output_token_seconds": [("_count", _NUM_REQUESTS * (_NUM_GENERATION_TOKENS_PER_REQUEST - 1))], "vllm:e2e_request_latency_seconds": [("_count", _NUM_REQUESTS)], "vllm:request_prompt_tokens": [("_sum", _NUM_REQUESTS * _NUM_PROMPT_TOKENS_PER_REQUEST), ("_count", _NUM_REQUESTS)], "vllm:request_generation_tokens": [("_sum", _NUM_REQUESTS * _NUM_GENERATION_TOKENS_PER_REQUEST), ("_count", _NUM_REQUESTS)], "vllm:request_params_n": [("_count", _NUM_REQUESTS)], "vllm:request_params_max_tokens": [("_sum", _NUM_REQUESTS * _NUM_GENERATION_TOKENS_PER_REQUEST), ("_count", _NUM_REQUESTS)], "vllm:prompt_tokens": [("_total", _NUM_REQUESTS * _NUM_PROMPT_TOKENS_PER_REQUEST)], "vllm:generation_tokens": [ ("_total", _NUM_REQUESTS * _NUM_PROMPT_TOKENS_PER_REQUEST) ], "vllm:request_success": [("_total", _NUM_REQUESTS)], } @pytest.mark.asyncio async def test_metrics_counts(server: RemoteOpenAIServer, client: openai.AsyncClient, use_v1: bool): for _ in range(_NUM_REQUESTS): # sending a request triggers the metrics to be logged. await client.completions.create( model=MODEL_NAME, prompt=_TOKENIZED_PROMPT, max_tokens=_NUM_GENERATION_TOKENS_PER_REQUEST) response = requests.get(server.url_for("metrics")) print(response.text) assert response.status_code == HTTPStatus.OK # Loop over all expected metric_families for metric_family, suffix_values_list in EXPECTED_VALUES.items(): if use_v1 and metric_family not in EXPECTED_METRICS_V1: continue found_metric = False # Check to see if the metric_family is found in the prom endpoint. for family in text_string_to_metric_families(response.text): if family.name == metric_family: found_metric = True # Check that each suffix is found in the prom endpoint. for suffix, expected_value in suffix_values_list: metric_name_w_suffix = f"{metric_family}{suffix}" found_suffix = False for sample in family.samples: if sample.name == metric_name_w_suffix: found_suffix = True # For each suffix, value sure the value matches # what we expect. assert sample.value == expected_value, ( f"{metric_name_w_suffix} expected value of " f"{expected_value} did not match found value " f"{sample.value}") break assert found_suffix, ( f"Did not find {metric_name_w_suffix} in prom endpoint" ) break assert found_metric, (f"Did not find {metric_family} in prom endpoint") EXPECTED_METRICS = [ "vllm:num_requests_running", "vllm:num_requests_swapped", "vllm:num_requests_waiting", "vllm:gpu_cache_usage_perc", "vllm:cpu_cache_usage_perc", "vllm:time_to_first_token_seconds_sum", "vllm:time_to_first_token_seconds_bucket", "vllm:time_to_first_token_seconds_count", "vllm:time_per_output_token_seconds_sum", "vllm:time_per_output_token_seconds_bucket", "vllm:time_per_output_token_seconds_count", "vllm:e2e_request_latency_seconds_sum", "vllm:e2e_request_latency_seconds_bucket", "vllm:e2e_request_latency_seconds_count", "vllm:request_prompt_tokens_sum", "vllm:request_prompt_tokens_bucket", "vllm:request_prompt_tokens_count", "vllm:request_generation_tokens_sum", "vllm:request_generation_tokens_bucket", "vllm:request_generation_tokens_count", "vllm:request_params_n_sum", "vllm:request_params_n_bucket", "vllm:request_params_n_count", "vllm:request_params_max_tokens_sum", "vllm:request_params_max_tokens_bucket", "vllm:request_params_max_tokens_count", "vllm:num_preemptions_total", "vllm:prompt_tokens_total", "vllm:generation_tokens_total", "vllm:request_success_total", "vllm:cache_config_info", # labels in cache_config_info "block_size", "cache_dtype", "cpu_offload_gb", "enable_prefix_caching", "gpu_memory_utilization", "num_cpu_blocks", "num_gpu_blocks", "num_gpu_blocks_override", "sliding_window", "swap_space_bytes", ] EXPECTED_METRICS_V1 = [ "vllm:num_requests_running", "vllm:num_requests_waiting", "vllm:prompt_tokens_total", "vllm:generation_tokens_total", "vllm:request_prompt_tokens_sum", "vllm:request_prompt_tokens_bucket", "vllm:request_prompt_tokens_count", "vllm:request_generation_tokens_sum", "vllm:request_generation_tokens_bucket", "vllm:request_generation_tokens_count", ] @pytest.mark.asyncio async def test_metrics_exist(server: RemoteOpenAIServer, client: openai.AsyncClient, use_v1: bool): # sending a request triggers the metrics to be logged. await client.completions.create(model=MODEL_NAME, prompt="Hello, my name is", max_tokens=5, temperature=0.0) response = requests.get(server.url_for("metrics")) assert response.status_code == HTTPStatus.OK for metric in (EXPECTED_METRICS_V1 if use_v1 else EXPECTED_METRICS): assert metric in response.text def test_metrics_exist_run_batch(use_v1: bool): if use_v1: pytest.skip("Skipping test on vllm V1") input_batch = """{"custom_id": "request-0", "method": "POST", "url": "/v1/embeddings", "body": {"model": "intfloat/e5-mistral-7b-instruct", "input": "You are a helpful assistant."}}""" # noqa: E501 base_url = "0.0.0.0" port = "8001" server_url = f"http://{base_url}:{port}" with tempfile.NamedTemporaryFile( "w") as input_file, tempfile.NamedTemporaryFile( "r") as output_file: input_file.write(input_batch) input_file.flush() proc = subprocess.Popen([ sys.executable, "-m", "vllm.entrypoints.openai.run_batch", "-i", input_file.name, "-o", output_file.name, "--model", "intfloat/e5-mistral-7b-instruct", "--enable-metrics", "--url", base_url, "--port", port, ], ) def is_server_up(url): try: response = requests.get(url) return response.status_code == 200 except requests.ConnectionError: return False while not is_server_up(server_url): time.sleep(1) response = requests.get(server_url + "/metrics") assert response.status_code == HTTPStatus.OK proc.wait()