"""Benchmark the latency of processing a single batch of requests.""" import argparse import time from pathlib import Path from typing import Optional import numpy as np import torch from tqdm import tqdm from vllm import LLM, SamplingParams def main(args: argparse.Namespace): print(args) # NOTE(woosuk): If the request cannot be processed in a single batch, # the engine will automatically process the request in multiple batches. llm = LLM( model=args.model, tokenizer=args.tokenizer, quantization=args.quantization, tensor_parallel_size=args.tensor_parallel_size, trust_remote_code=args.trust_remote_code, dtype=args.dtype, ) sampling_params = SamplingParams( n=args.n, temperature=0.0 if args.use_beam_search else 1.0, top_p=1.0, use_beam_search=args.use_beam_search, ignore_eos=True, max_tokens=args.output_len, ) print(sampling_params) dummy_prompt_token_ids = [[0] * args.input_len] * args.batch_size def run_to_completion(profile_dir: Optional[str] = None): if profile_dir: with torch.profiler.profile( activities=[ torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA, ], on_trace_ready=torch.profiler.tensorboard_trace_handler( str(profile_dir))) as p: llm.generate(prompt_token_ids=dummy_prompt_token_ids, sampling_params=sampling_params, use_tqdm=False) print(p.key_averages()) else: start_time = time.perf_counter() llm.generate(prompt_token_ids=dummy_prompt_token_ids, sampling_params=sampling_params, use_tqdm=False) end_time = time.perf_counter() latency = end_time - start_time return latency print("Warming up...") run_to_completion(profile_dir=None) if args.profile: profile_dir = args.profile_result_dir if not profile_dir: profile_dir = Path(".") / "vllm_benchmark_result" / f"latency_result_{time.time()}" print(f"Profiling (results will be saved to '{profile_dir}')...") run_to_completion(profile_dir=args.profile_result_dir) return # Benchmark. latencies = [] for _ in tqdm(range(args.num_iters), desc="Profiling iterations"): latencies.append(run_to_completion(profile_dir=None)) print(f'Avg latency: {np.mean(latencies)} seconds') if __name__ == '__main__': parser = argparse.ArgumentParser( description='Benchmark the latency of processing a single batch of ' 'requests till completion.') parser.add_argument('--model', type=str, default='facebook/opt-125m') parser.add_argument('--tokenizer', type=str, default=None) parser.add_argument('--quantization', '-q', choices=['awq', 'squeezellm', None], default=None) parser.add_argument('--tensor-parallel-size', '-tp', type=int, default=1) parser.add_argument('--input-len', type=int, default=32) parser.add_argument('--output-len', type=int, default=128) parser.add_argument('--batch-size', type=int, default=8) parser.add_argument('--n', type=int, default=1, help='Number of generated sequences per prompt.') parser.add_argument('--use-beam-search', action='store_true') parser.add_argument('--num-iters', type=int, default=3, help='Number of iterations to run.') parser.add_argument('--trust-remote-code', action='store_true', help='trust remote code from huggingface') parser.add_argument( '--dtype', type=str, default='auto', choices=['auto', 'half', 'float16', 'bfloat16', 'float', 'float32'], help='data type for model weights and activations. ' 'The "auto" option will use FP16 precision ' 'for FP32 and FP16 models, and BF16 precision ' 'for BF16 models.') parser.add_argument( '--profile', action='store_true', help='profile the generation process of a single batch') parser.add_argument( '--profile-result-dir', type=str, default=None, help=( 'path to save the pytorch profiler output. Can be visualized ' 'with ui.perfetto.dev or Tensorboard.' )) args = parser.parse_args() main(args)