from typing import Dict, List, Optional import pytest from vllm.compilation.levels import CompilationLevel from vllm.utils import cuda_device_count_stateless from ..utils import compare_all_settings # we cannot afford testing the full Catesian product # of all models and all levels @pytest.mark.parametrize( "model, model_args, pp_size, tp_size, attn_backend, method, fullgraph", [ ("meta-llama/Llama-3.2-1B", [], 2, 2, "FLASH_ATTN", "generate", True), ("nm-testing/Meta-Llama-3-8B-Instruct-W8A8-Dyn-Per-Token-2048-Samples", ["--quantization", "compressed-tensors" ], 1, 1, "FLASH_ATTN", "generate", True), ("google/gemma-2-2b-it", [], 1, 2, "FLASHINFER", "generate", True), # TODO: add multi-modality test for llava ("llava-hf/llava-1.5-7b-hf", [], 2, 1, "FLASHINFER", "generate", False) ]) def test_compile_correctness(model, model_args, pp_size, tp_size, attn_backend, method, fullgraph): # this test is run under multiple suits, with different GPUs. # make sure we only run the test with correct CUDA devices. # don't use "<", as it will duplicate the tests. if cuda_device_count_stateless() != pp_size * tp_size: pytest.skip("Not correct CUDA devices for the test.") import os os.environ["VLLM_ATTENTION_BACKEND"] = attn_backend if not fullgraph: os.environ["VLLM_TEST_DYNAMO_FULLGRAPH_CAPTURE"] = "0" all_args = [["--enforce-eager"] + model_args + ["--max_model_len", "1024"] + ["-pp", str(pp_size)] + ["-tp", str(tp_size)]] * 3 # don't test VLLM_TORCH_COMPILE_LEVEL == 3 case # inductor will change the output, so we cannot compare them. all_envs: List[Optional[Dict[str, str]]] = [{ "VLLM_TORCH_COMPILE_LEVEL": str(level) } for level in [ CompilationLevel.NO_COMPILATION, CompilationLevel.DYNAMO_AS_IS, CompilationLevel.DYNAMO_ONCE, ]] compare_all_settings(model, all_args, all_envs, method=method)