# SPDX-License-Identifier: Apache-2.0 import pickle import pytest import torch from transformers import AutoTokenizer from vllm.config import ModelConfig from vllm.model_executor.guided_decoding import ( get_guided_decoding_logits_processor, get_local_guided_decoding_logits_processor) from vllm.model_executor.guided_decoding.outlines_logits_processors import ( JSONLogitsProcessor, RegexLogitsProcessor) from vllm.sampling_params import GuidedDecodingParams MODEL_NAME = 'HuggingFaceH4/zephyr-7b-beta' GUIDED_DECODING_BACKENDS = ["outlines", "lm-format-enforcer", "xgrammar"] def test_guided_logits_processors(sample_regex, sample_json_schema): """Basic unit test for RegexLogitsProcessor and JSONLogitsProcessor.""" tokenizer = AutoTokenizer.from_pretrained('HuggingFaceH4/zephyr-7b-beta') regex_LP = RegexLogitsProcessor(sample_regex, tokenizer) json_LP = JSONLogitsProcessor(sample_json_schema, tokenizer, whitespace_pattern=None) token_ids = tokenizer.encode( f"Give an example IPv4 address with this regex: {sample_regex}") tensor = torch.rand(32000) original_tensor = torch.clone(tensor) regex_LP(token_ids, tensor) assert tensor.shape == original_tensor.shape assert not torch.allclose(tensor, original_tensor) token_ids = tokenizer.encode( f"Give an employee profile that fits this schema: {sample_json_schema}" ) tensor = torch.rand(32000) original_tensor = torch.clone(tensor) json_LP(token_ids, tensor) assert tensor.shape == original_tensor.shape assert not torch.allclose(tensor, original_tensor) @pytest.mark.asyncio @pytest.mark.parametrize("backend", GUIDED_DECODING_BACKENDS) @pytest.mark.parametrize("is_local", [True, False]) async def test_guided_logits_processor_black_box(backend: str, is_local: bool, sample_regex, sample_json_schema): config = ModelConfig( MODEL_NAME, task="generate", tokenizer=MODEL_NAME, tokenizer_mode="auto", trust_remote_code=False, seed=0, dtype="bfloat16", ) tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) token_ids = tokenizer.encode( f"Give an example IPv4 address with this regex: {sample_regex}") regex_request = GuidedDecodingParams(regex=sample_regex, backend=backend) regex_lp = get_local_guided_decoding_logits_processor( regex_request, tokenizer, config) if is_local else \ await get_guided_decoding_logits_processor( regex_request, tokenizer, config) assert regex_lp is not None tensor = torch.rand(32000) original_tensor = torch.clone(tensor) tensor = regex_lp(token_ids, tensor) assert tensor.shape == original_tensor.shape assert not torch.allclose(tensor, original_tensor) token_ids = tokenizer.encode( f"Give an employee profile that fits this schema: {sample_json_schema}" ) json_request = GuidedDecodingParams(json=sample_json_schema, backend=backend) json_lp = await get_guided_decoding_logits_processor( json_request, tokenizer, config) assert json_lp is not None tensor = torch.rand(32000) original_tensor = torch.clone(tensor) tensor = json_lp(token_ids, tensor) assert tensor.shape == original_tensor.shape assert not torch.allclose(tensor, original_tensor) def test_multiple_guided_options_not_allowed(sample_json_schema, sample_regex): with pytest.raises(ValueError, match="You can only use one kind of guided"): GuidedDecodingParams(json=sample_json_schema, regex=sample_regex) with pytest.raises(ValueError, match="You can only use one kind of guided"): GuidedDecodingParams(json=sample_json_schema, json_object=True) with pytest.raises(ValueError, match="You can only use one kind of guided"): GuidedDecodingParams(json=sample_json_schema, choice=["a", "b"]) with pytest.raises(ValueError, match="You can only use one kind of guided"): GuidedDecodingParams(json=sample_json_schema, grammar="test grammar") def test_guided_decoding_backend_options(): """Test backend-specific options""" params = GuidedDecodingParams( backend="xgrammar:option-1,option-2,option-3") assert params.backend_options() == ["option-1", "option-2", "option-3"] no_fallback = GuidedDecodingParams(backend="xgrammar:option-1,no-fallback") assert no_fallback.no_fallback() def test_pickle_xgrammar_tokenizer_data(): # TODO: move to another test file for xgrammar try: import xgrammar as xgr except ImportError: pytest.skip("Could not import xgrammar to run test") from vllm.model_executor.guided_decoding.xgrammar_decoding import ( TokenizerData) tokenizer_data = TokenizerData(vocab_type=xgr.VocabType.RAW) pickled = pickle.dumps(tokenizer_data) assert pickled is not None depickled: TokenizerData = pickle.loads(pickled) assert depickled is not None assert depickled.vocab_type == xgr.VocabType.RAW