"""Custom activation functions.""" import torch import torch.nn as nn from cacheflow import activation_ops _ACTIVATION_REGISTRY = { "gelu": nn.GELU(), "gelu_new": nn.GELU(approximate="tanh"), # NOTE: This may introduce small rounding errors. "gelu_fast": nn.GELU(approximate="tanh"), # NOTE: This may introduce small rounding errors. "relu": nn.ReLU(), } def get_act_fn(act_fn: str) -> nn.Module: """Get an activation function by name.""" act_fn = act_fn.lower() if act_fn in _ACTIVATION_REGISTRY: return _ACTIVATION_REGISTRY[act_fn] raise ValueError(f"Activation function {act_fn!r} is not supported.") class SiluAndMul(nn.Module): """An activation function for SwiGLU. The function computes x -> silu(x[:d]) * x[d:] where d = x.shape[1] // 2. """ def __init__(self): super().__init__() def forward( self, x: torch.Tensor, # (num_tokens, 2 * d) ) -> torch.Tensor: # (num_tokens, d) num_tokens = x.shape[0] d = x.shape[1] // 2 out = torch.empty(num_tokens, d, dtype=x.dtype, device=x.device) activation_ops.silu_and_mul(out, x) return out