.. _vlm: Using VLMs ========== vLLM provides experimental support for Vision Language Models (VLMs). See the :ref:`list of supported VLMs here `. This document shows you how to run and serve these models using vLLM. .. note:: We are actively iterating on VLM support. See `this RFC `_ for upcoming changes, and `open an issue on GitHub `_ if you have any feedback or feature requests. Offline Inference ----------------- Single-image input ^^^^^^^^^^^^^^^^^^ The :class:`~vllm.LLM` class can be instantiated in much the same way as language-only models. .. code-block:: python llm = LLM(model="llava-hf/llava-1.5-7b-hf") To pass an image to the model, note the following in :class:`vllm.inputs.PromptType`: * ``prompt``: The prompt should follow the format that is documented on HuggingFace. * ``multi_modal_data``: This is a dictionary that follows the schema defined in :class:`vllm.multimodal.MultiModalDataDict`. .. code-block:: python # Refer to the HuggingFace repo for the correct format to use prompt = "USER: \nWhat is the content of this image?\nASSISTANT:" # Load the image using PIL.Image image = PIL.Image.open(...) # Single prompt inference outputs = llm.generate({ "prompt": prompt, "multi_modal_data": {"image": image}, }) for o in outputs: generated_text = o.outputs[0].text print(generated_text) # Inference with image embeddings as input image_embeds = torch.load(...) # torch.Tensor of shape (1, image_feature_size, hidden_size of LM) outputs = llm.generate({ "prompt": prompt, "multi_modal_data": {"image": image_embeds}, }) for o in outputs: generated_text = o.outputs[0].text print(generated_text) # Inference with image embeddings as input with additional parameters # Specifically, we are conducting a trial run of Qwen2VL and MiniCPM-V with the new input format, which utilizes additional parameters. mm_data = {} image_embeds = torch.load(...) # torch.Tensor of shape (num_images, image_feature_size, hidden_size of LM) # For Qwen2VL, image_grid_thw is needed to calculate positional encoding. mm_data['image'] = { "image_embeds": image_embeds, "image_grid_thw": torch.load(...) # torch.Tensor of shape (1, 3), } # For MiniCPM-V, image_size_list is needed to calculate details of the sliced image. mm_data['image'] = { "image_embeds": image_embeds, "image_size_list": [image.size] # list of image sizes } outputs = llm.generate({ "prompt": prompt, "multi_modal_data": mm_data, }) for o in outputs: generated_text = o.outputs[0].text print(generated_text) # Batch inference image_1 = PIL.Image.open(...) image_2 = PIL.Image.open(...) outputs = llm.generate( [ { "prompt": "USER: \nWhat is the content of this image?\nASSISTANT:", "multi_modal_data": {"image": image_1}, }, { "prompt": "USER: \nWhat's the color of this image?\nASSISTANT:", "multi_modal_data": {"image": image_2}, } ] ) for o in outputs: generated_text = o.outputs[0].text print(generated_text) A code example can be found in `examples/offline_inference_vision_language.py `_. Multi-image input ^^^^^^^^^^^^^^^^^ Multi-image input is only supported for a subset of VLMs, as shown :ref:`here `. To enable multiple multi-modal items per text prompt, you have to set ``limit_mm_per_prompt`` for the :class:`~vllm.LLM` class. .. code-block:: python llm = LLM( model="microsoft/Phi-3.5-vision-instruct", trust_remote_code=True, # Required to load Phi-3.5-vision max_model_len=4096, # Otherwise, it may not fit in smaller GPUs limit_mm_per_prompt={"image": 2}, # The maximum number to accept ) Instead of passing in a single image, you can pass in a list of images. .. code-block:: python # Refer to the HuggingFace repo for the correct format to use prompt = "<|user|>\n<|image_1|>\n<|image_2|>\nWhat is the content of each image?<|end|>\n<|assistant|>\n" # Load the images using PIL.Image image1 = PIL.Image.open(...) image2 = PIL.Image.open(...) outputs = llm.generate({ "prompt": prompt, "multi_modal_data": { "image": [image1, image2] }, }) for o in outputs: generated_text = o.outputs[0].text print(generated_text) A code example can be found in `examples/offline_inference_vision_language_multi_image.py `_. Multi-image input can be extended to perform video captioning. We show this with `Qwen2-VL `_ as it supports videos: .. code-block:: python # Specify the maximum number of frames per video to be 4. This can be changed. llm = LLM("Qwen/Qwen2-VL-2B-Instruct", limit_mm_per_prompt={"image": 4}) # Create the request payload. video_frames = ... # load your video making sure it only has the number of frames specified earlier. message = { "role": "user", "content": [ {"type": "text", "text": "Describe this set of frames. Consider the frames to be a part of the same video."}, ], } for i in range(len(video_frames)): base64_image = encode_image(video_frames[i]) # base64 encoding. new_image = {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}} message["content"].append(new_image) # Perform inference and log output. outputs = llm.chat([message]) for o in outputs: generated_text = o.outputs[0].text print(generated_text) Online Inference ---------------- OpenAI Vision API ^^^^^^^^^^^^^^^^^ You can serve vision language models with vLLM's HTTP server that is compatible with `OpenAI Vision API `_. Below is an example on how to launch the same ``microsoft/Phi-3.5-vision-instruct`` with vLLM's OpenAI-compatible API server. .. code-block:: bash vllm serve microsoft/Phi-3.5-vision-instruct --task generate \ --trust-remote-code --max-model-len 4096 --limit-mm-per-prompt image=2 .. important:: Since OpenAI Vision API is based on `Chat Completions API `_, a chat template is **required** to launch the API server. Although Phi-3.5-Vision comes with a chat template, for other models you may have to provide one if the model's tokenizer does not come with it. The chat template can be inferred based on the documentation on the model's HuggingFace repo. For example, LLaVA-1.5 (``llava-hf/llava-1.5-7b-hf``) requires a chat template that can be found `here `_. To consume the server, you can use the OpenAI client like in the example below: .. code-block:: python from openai import OpenAI openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" client = OpenAI( api_key=openai_api_key, base_url=openai_api_base, ) # Single-image input inference image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" chat_response = client.chat.completions.create( model="microsoft/Phi-3.5-vision-instruct", messages=[{ "role": "user", "content": [ # NOTE: The prompt formatting with the image token `` is not needed # since the prompt will be processed automatically by the API server. {"type": "text", "text": "What’s in this image?"}, {"type": "image_url", "image_url": {"url": image_url}}, ], }], ) print("Chat completion output:", chat_response.choices[0].message.content) # Multi-image input inference image_url_duck = "https://upload.wikimedia.org/wikipedia/commons/d/da/2015_Kaczka_krzy%C5%BCowka_w_wodzie_%28samiec%29.jpg" image_url_lion = "https://upload.wikimedia.org/wikipedia/commons/7/77/002_The_lion_king_Snyggve_in_the_Serengeti_National_Park_Photo_by_Giles_Laurent.jpg" chat_response = client.chat.completions.create( model="microsoft/Phi-3.5-vision-instruct", messages=[{ "role": "user", "content": [ {"type": "text", "text": "What are the animals in these images?"}, {"type": "image_url", "image_url": {"url": image_url_duck}}, {"type": "image_url", "image_url": {"url": image_url_lion}}, ], }], ) print("Chat completion output:", chat_response.choices[0].message.content) A full code example can be found in `examples/openai_chat_completion_client_for_multimodal.py `_. .. tip:: There is no need to place image placeholders in the text content of the API request - they are already represented by the image content. In fact, you can place image placeholders in the middle of the text by interleaving text and image content. .. note:: By default, the timeout for fetching images through http url is ``5`` seconds. You can override this by setting the environment variable: .. code-block:: console $ export VLLM_IMAGE_FETCH_TIMEOUT= Chat Embeddings API ^^^^^^^^^^^^^^^^^^^ vLLM's Chat Embeddings API is a superset of OpenAI's `Embeddings API `_, where a list of ``messages`` can be passed instead of batched ``inputs``. This enables multi-modal inputs to be passed to embedding models. .. tip:: The schema of ``messages`` is exactly the same as in Chat Completions API. In this example, we will serve the ``TIGER-Lab/VLM2Vec-Full`` model. .. code-block:: bash vllm serve TIGER-Lab/VLM2Vec-Full --task embedding \ --trust-remote-code --max-model-len 4096 --chat-template examples/template_vlm2vec.jinja .. important:: Since VLM2Vec has the same model architecture as Phi-3.5-Vision, we have to explicitly pass ``--task embedding`` to run this model in embedding mode instead of text generation mode. .. important:: VLM2Vec does not expect chat-based input. We use a `custom chat template `_ to combine the text and images together. Since the request schema is not defined by OpenAI client, we post a request to the server using the lower-level ``requests`` library: .. code-block:: python import requests image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" response = requests.post( "http://localhost:8000/v1/embeddings", json={ "model": "TIGER-Lab/VLM2Vec-Full", "messages": [{ "role": "user", "content": [ {"type": "image_url", "image_url": {"url": image_url}}, {"type": "text", "text": "Represent the given image."}, ], }], "encoding_format": "float", }, ) response.raise_for_status() response_json = response.json() print("Embedding output:", response_json["data"][0]["embedding"]) A full code example can be found in `examples/openai_chat_embedding_client_for_multimodal.py `_.