import pytest import torch import torch.nn.functional as F from transformers.activations import get_activation from vllm import activation_ops DTYPES = [torch.half, torch.bfloat16, torch.float] NUM_TOKENS = [7, 83, 2048] # Arbitrary values for testing D = [512, 4096, 5120, 13824] # Arbitrary values for testing SEEDS = [0] def ref_silu_and_mul(x: torch.Tensor) -> torch.Tensor: x1, x2 = x.chunk(chunks=2, dim=1) return F.silu(x1) * x2 @pytest.mark.parametrize("num_tokens", NUM_TOKENS) @pytest.mark.parametrize("d", D) @pytest.mark.parametrize("dtype", DTYPES) @pytest.mark.parametrize("seed", SEEDS) @torch.inference_mode() def test_silu_and_mul( num_tokens: int, d: int, dtype: torch.dtype, seed: int, ) -> None: torch.random.manual_seed(seed) torch.cuda.manual_seed(seed) x = torch.randn(num_tokens, 2 * d, dtype=dtype, device="cuda") out = torch.empty(num_tokens, d, dtype=dtype, device="cuda") activation_ops.silu_and_mul(out, x) ref_out = ref_silu_and_mul(x) assert torch.allclose(out, ref_out, atol=1e-5, rtol=1e-5) @pytest.mark.parametrize("num_tokens", NUM_TOKENS) @pytest.mark.parametrize("d", D) @pytest.mark.parametrize("dtype", DTYPES) @pytest.mark.parametrize("seed", SEEDS) @torch.inference_mode() def test_gelu_new( num_tokens: int, d: int, dtype: torch.dtype, seed: int, ) -> None: torch.random.manual_seed(seed) torch.cuda.manual_seed(seed) x = torch.randn(num_tokens, d, dtype=dtype, device="cuda") out = torch.empty(num_tokens, d, dtype=dtype, device="cuda") activation_ops.gelu_new(out, x) ref_out = get_activation("gelu_new")(x) assert torch.allclose(out, ref_out, atol=1e-5, rtol=1e-5) @pytest.mark.parametrize("num_tokens", NUM_TOKENS) @pytest.mark.parametrize("d", D) @pytest.mark.parametrize("dtype", DTYPES) @pytest.mark.parametrize("seed", SEEDS) def test_gelu_fast( num_tokens: int, d: int, dtype: torch.dtype, seed: int, ) -> None: torch.random.manual_seed(seed) torch.cuda.manual_seed(seed) x = torch.randn(num_tokens, d, dtype=dtype, device="cuda") out = torch.empty(num_tokens, d, dtype=dtype, device="cuda") activation_ops.gelu_fast(out, x) ref_out = get_activation("gelu_fast")(x) assert torch.allclose(out, ref_out, atol=1e-5, rtol=1e-5)