(structured-outputs)= # Structured Outputs vLLM supports the generation of structured outputs using [outlines](https://github.com/dottxt-ai/outlines) or [lm-format-enforcer](https://github.com/noamgat/lm-format-enforcer) as backends for the guided decoding. This document shows you some examples of the different options that are available to generate structured outputs. ## Online Inference (OpenAI API) You can generate structured outputs using the OpenAI's [Completions](https://platform.openai.com/docs/api-reference/completions) and [Chat](https://platform.openai.com/docs/api-reference/chat) API. The following parameters are supported, which must be added as extra parameters: - `guided_choice`: the output will be exactly one of the choices. - `guided_regex`: the output will follow the regex pattern. - `guided_json`: the output will follow the JSON schema. - `guided_grammar`: the output will follow the context free grammar. - `guided_whitespace_pattern`: used to override the default whitespace pattern for guided json decoding. - `guided_decoding_backend`: used to select the guided decoding backend to use. You can see the complete list of supported parameters on the [OpenAI Compatible Server](../serving/openai_compatible_server.md) page. Now let´s see an example for each of the cases, starting with the `guided_choice`, as it´s the easiest one: ```python from openai import OpenAI client = OpenAI( base_url="http://localhost:8000/v1", api_key="-", ) completion = client.chat.completions.create( model="Qwen/Qwen2.5-3B-Instruct", messages=[ {"role": "user", "content": "Classify this sentiment: vLLM is wonderful!"} ], extra_body={"guided_choice": ["positive", "negative"]}, ) print(completion.choices[0].message.content) ``` The next example shows how to use the `guided_regex`. The idea is to generate an email address, given a simple regex template: ```python completion = client.chat.completions.create( model="Qwen/Qwen2.5-3B-Instruct", messages=[ { "role": "user", "content": "Generate an example email address for Alan Turing, who works in Enigma. End in .com and new line. Example result: alan.turing@enigma.com\n", } ], extra_body={"guided_regex": "\w+@\w+\.com\n", "stop": ["\n"]}, ) print(completion.choices[0].message.content) ``` One of the most relevant features in structured text generation is the option to generate a valid JSON with pre-defined fields and formats. For this we can use the `guided_json` parameter in two different ways: - Using directly a [JSON Schema](https://json-schema.org/) - Defining a [Pydantic model](https://docs.pydantic.dev/latest/) and then extracting the JSON Schema from it (which is normally an easier option). The next example shows how to use the `guided_json` parameter with a Pydantic model: ```python from pydantic import BaseModel from enum import Enum class CarType(str, Enum): sedan = "sedan" suv = "SUV" truck = "Truck" coupe = "Coupe" class CarDescription(BaseModel): brand: str model: str car_type: CarType json_schema = CarDescription.model_json_schema() completion = client.chat.completions.create( model="Qwen/Qwen2.5-3B-Instruct", messages=[ { "role": "user", "content": "Generate a JSON with the brand, model and car_type of the most iconic car from the 90's", } ], extra_body={"guided_json": json_schema}, ) print(completion.choices[0].message.content) ``` ```{tip} While not strictly necessary, normally it´s better to indicate in the prompt that a JSON needs to be generated and which fields and how should the LLM fill them. This can improve the results notably in most cases. ``` Finally we have the `guided_grammar`, which probably is the most difficult one to use but it´s really powerful, as it allows us to define complete languages like SQL queries. It works by using a context free EBNF grammar, which for example we can use to define a specific format of simplified SQL queries, like in the example below: ```python simplified_sql_grammar = """ ?start: select_statement ?select_statement: "SELECT " column_list " FROM " table_name ?column_list: column_name ("," column_name)* ?table_name: identifier ?column_name: identifier ?identifier: /[a-zA-Z_][a-zA-Z0-9_]*/ """ completion = client.chat.completions.create( model="Qwen/Qwen2.5-3B-Instruct", messages=[ { "role": "user", "content": "Generate an SQL query to show the 'username' and 'email' from the 'users' table.", } ], extra_body={"guided_grammar": simplified_sql_grammar}, ) print(completion.choices[0].message.content) ``` The complete code of the examples can be found on [examples/openai_chat_completion_structured_outputs.py](https://github.com/vllm-project/vllm/blob/main/examples/openai_chat_completion_structured_outputs.py). ## Experimental Automatic Parsing (OpenAI API) This section covers the OpenAI beta wrapper over the `client.chat.completions.create()` method that provides richer integrations with Python specific types. At the time of writing (`openai==1.54.4`), this is a "beta" feature in the OpenAI client library. Code reference can be found [here](https://github.com/openai/openai-python/blob/52357cff50bee57ef442e94d78a0de38b4173fc2/src/openai/resources/beta/chat/completions.py#L100-L104). For the following examples, vLLM was setup using `vllm serve meta-llama/Llama-3.1-8B-Instruct` Here is a simple example demonstrating how to get structured output using Pydantic models: ```python from pydantic import BaseModel from openai import OpenAI class Info(BaseModel): name: str age: int client = OpenAI(base_url="http://0.0.0.0:8000/v1", api_key="dummy") completion = client.beta.chat.completions.parse( model="meta-llama/Llama-3.1-8B-Instruct", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "My name is Cameron, I'm 28. What's my name and age?"}, ], response_format=Info, extra_body=dict(guided_decoding_backend="outlines"), ) message = completion.choices[0].message print(message) assert message.parsed print("Name:", message.parsed.name) print("Age:", message.parsed.age) ``` Output: ```console ParsedChatCompletionMessage[Testing](content='{"name": "Cameron", "age": 28}', refusal=None, role='assistant', audio=None, function_call=None, tool_calls=[], parsed=Testing(name='Cameron', age=28)) Name: Cameron Age: 28 ``` Here is a more complex example using nested Pydantic models to handle a step-by-step math solution: ```python from typing import List from pydantic import BaseModel from openai import OpenAI class Step(BaseModel): explanation: str output: str class MathResponse(BaseModel): steps: List[Step] final_answer: str client = OpenAI(base_url="http://0.0.0.0:8000/v1", api_key="dummy") completion = client.beta.chat.completions.parse( model="meta-llama/Llama-3.1-8B-Instruct", messages=[ {"role": "system", "content": "You are a helpful expert math tutor."}, {"role": "user", "content": "Solve 8x + 31 = 2."}, ], response_format=MathResponse, extra_body=dict(guided_decoding_backend="outlines"), ) message = completion.choices[0].message print(message) assert message.parsed for i, step in enumerate(message.parsed.steps): print(f"Step #{i}:", step) print("Answer:", message.parsed.final_answer) ``` Output: ```console ParsedChatCompletionMessage[MathResponse](content='{ "steps": [{ "explanation": "First, let\'s isolate the term with the variable \'x\'. To do this, we\'ll subtract 31 from both sides of the equation.", "output": "8x + 31 - 31 = 2 - 31"}, { "explanation": "By subtracting 31 from both sides, we simplify the equation to 8x = -29.", "output": "8x = -29"}, { "explanation": "Next, let\'s isolate \'x\' by dividing both sides of the equation by 8.", "output": "8x / 8 = -29 / 8"}], "final_answer": "x = -29/8" }', refusal=None, role='assistant', audio=None, function_call=None, tool_calls=[], parsed=MathResponse(steps=[Step(explanation="First, let's isolate the term with the variable 'x'. To do this, we'll subtract 31 from both sides of the equation.", output='8x + 31 - 31 = 2 - 31'), Step(explanation='By subtracting 31 from both sides, we simplify the equation to 8x = -29.', output='8x = -29'), Step(explanation="Next, let's isolate 'x' by dividing both sides of the equation by 8.", output='8x / 8 = -29 / 8')], final_answer='x = -29/8')) Step #0: explanation="First, let's isolate the term with the variable 'x'. To do this, we'll subtract 31 from both sides of the equation." output='8x + 31 - 31 = 2 - 31' Step #1: explanation='By subtracting 31 from both sides, we simplify the equation to 8x = -29.' output='8x = -29' Step #2: explanation="Next, let's isolate 'x' by dividing both sides of the equation by 8." output='8x / 8 = -29 / 8' Answer: x = -29/8 ``` ## Offline Inference Offline inference allows for the same types of guided decoding. To use it, we´ll need to configure the guided decoding using the class `GuidedDecodingParams` inside `SamplingParams`. The main available options inside `GuidedDecodingParams` are: - `json` - `regex` - `choice` - `grammar` - `backend` - `whitespace_pattern` These parameters can be used in the same way as the parameters from the Online Inference examples above. One example for the usage of the `choices` parameter is shown below: ```python from vllm import LLM, SamplingParams from vllm.sampling_params import GuidedDecodingParams llm = LLM(model="HuggingFaceTB/SmolLM2-1.7B-Instruct") guided_decoding_params = GuidedDecodingParams(choice=["Positive", "Negative"]) sampling_params = SamplingParams(guided_decoding=guided_decoding_params) outputs = llm.generate( prompts="Classify this sentiment: vLLM is wonderful!", sampling_params=sampling_params, ) print(outputs[0].outputs[0].text) ``` A complete example with all options can be found in [examples/offline_inference_structured_outputs.py](https://github.com/vllm-project/vllm/blob/main/examples/offline_inference_structured_outputs.py).