import gc from dataclasses import fields from enum import Enum from typing import Dict, List, Tuple import pytest import torch from transformers import AutoTokenizer from vllm.config import VisionLanguageConfig model_and_vl_config = [ ("llava-hf/llava-1.5-7b-hf", VisionLanguageConfig( image_input_type=VisionLanguageConfig.ImageInputType.PIXEL_VALUES, image_feature_size=576, image_token_id=32000, image_input_shape=(1, 3, 336, 336))), ("llava-hf/llava-1.5-7b-hf", VisionLanguageConfig( image_input_type=VisionLanguageConfig.ImageInputType.IMAGE_FEATURES, image_feature_size=576, image_token_id=32000, image_input_shape=(1, 576, 1024))) ] def as_dict(vision_language_config: VisionLanguageConfig) -> Dict: """Flatten vision language config to pure args. Compatible with what llm entrypoint expects. """ result = {} for field in fields(vision_language_config): value = getattr(vision_language_config, field.name) if isinstance(value, Enum): result[field.name] = value.name.lower() elif isinstance(value, tuple): result[field.name] = ",".join([str(item) for item in value]) else: result[field.name] = value return result def sanitize_vllm_output(vllm_output: Tuple[List[int], str], vision_language_config: VisionLanguageConfig, model_id: str): """Sanitize vllm output to be comparable with hf output. The function reduces `input_ids` from 1, 32000, 32000, ..., 32000, x1, x2, x3 ... to 1, 32000, x1, x2, x3 ... It also reduces `output_str` from "bla" to "bla". """ tokenizer = AutoTokenizer.from_pretrained(model_id) image_token_str = tokenizer.decode(vision_language_config.image_token_id) image_token_str_len = len(image_token_str) input_ids, output_str = vllm_output sanitized_input_ids = input_ids[0:2] + input_ids[2 + vision_language_config .image_feature_size - 1:] sanitzied_output_str = output_str[vision_language_config. image_feature_size * image_token_str_len:] return sanitized_input_ids, sanitzied_output_str @pytest.mark.parametrize("worker_use_ray", [False]) @pytest.mark.parametrize("model_and_config", model_and_vl_config) @pytest.mark.parametrize("dtype", ["half"]) @pytest.mark.parametrize("max_tokens", [128]) def test_models(hf_runner, vllm_runner, hf_image_prompts, hf_images, vllm_image_prompts, vllm_images, model_and_config: tuple, dtype: str, max_tokens: int, worker_use_ray: bool) -> None: """Inference result should be the same between hf and vllm. All the image fixtures for the test is under tests/images. For huggingface runner, we provide the raw images as input. For vllm runner, we provide image tensors and corresponding vision language config as input. Note, the text input is also adjusted to abide by vllm contract. The text output is sanitized to be able to compare with hf. """ model_id, vision_language_config = model_and_config hf_model = hf_runner(model_id, dtype=dtype) hf_outputs = hf_model.generate_greedy(hf_image_prompts, max_tokens, images=hf_images) del hf_model gc.collect() torch.cuda.empty_cache() vllm_model = vllm_runner(model_id, dtype=dtype, worker_use_ray=worker_use_ray, **as_dict(vision_language_config)) vllm_outputs = vllm_model.generate_greedy(vllm_image_prompts, max_tokens, images=vllm_images) del vllm_model gc.collect() torch.cuda.empty_cache() for i in range(len(hf_image_prompts)): hf_output_ids, hf_output_str = hf_outputs[i] vllm_output_ids, vllm_output_str = sanitize_vllm_output( vllm_outputs[i], vision_language_config, model_id) assert hf_output_str == vllm_output_str, ( f"Test{i}:\nHF: {hf_output_str!r}\nvLLM: {vllm_output_str!r}") assert hf_output_ids == vllm_output_ids, ( f"Test{i}:\nHF: {hf_output_ids}\nvLLM: {vllm_output_ids}")