import types from typing import List, Optional, Type import pytest import torch from huggingface_hub import snapshot_download from PIL.Image import Image from vllm.model_executor.models.internvl import (IMG_CONTEXT, IMG_END, IMG_START, image_to_pixel_values) from vllm.multimodal.utils import rescale_image_size from vllm.utils import is_cpu from ..conftest import IMAGE_ASSETS, HfRunner, VllmRunner, _ImageAssets from .utils import check_logprobs_close pytestmark = pytest.mark.vlm HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts({ "stop_sign": "<|im_start|>User\n\nWhat's the content in the center of the image?<|im_end|>\n<|im_start|>Assistant\n", # noqa: E501 "cherry_blossom": "<|im_start|>User\n\nWhat is the season?<|im_end|>\n<|im_start|>Assistant\n", # noqa: E501 }) # we use snapshot_download to prevent conflicts between # dynamic_module and trust_remote_code for hf_runner models = [ snapshot_download("OpenGVLab/InternVL2-1B"), snapshot_download("OpenGVLab/InternVL2-2B"), # snapshot_download("OpenGVLab/InternVL2-4B"), # broken ] class InternVLProcessor: """A simple processor for InternVL2 HF model which misses a processor.""" def __init__(self, hf_runner: HfRunner): self.num_image_token = hf_runner.model.num_image_token self.tokenizer = hf_runner.tokenizer self.dtype = hf_runner.model.dtype def __call__(self, text: str, images: Image, **kwargs): pixel_values = image_to_pixel_values(images).to(self.dtype) num_patches_list = [pixel_values.shape[0]] for num_patches in num_patches_list: context_tokens = IMG_CONTEXT * self.num_image_token * num_patches image_tokens = IMG_START + context_tokens + IMG_END text = text.replace('', image_tokens, 1) prompt = self.tokenizer(text, return_tensors="pt") prompt.update({"pixel_values": pixel_values}) return prompt # adapted from https://huggingface.co/OpenGVLab/InternVL2-1B/blob/main/modeling_internvl_chat.py def generate( self, pixel_values: torch.FloatTensor, input_ids: torch.FloatTensor, attention_mask: Optional[torch.LongTensor] = None, **generate_kwargs, ) -> torch.LongTensor: """Generate method for InternVL2 model without fixed use_cache.""" assert self.img_context_token_id is not None vit_embeds = self.extract_feature(pixel_values) input_embeds = self.language_model.get_input_embeddings()(input_ids) B, N, C = input_embeds.shape input_embeds = input_embeds.reshape(B * N, C) input_ids = input_ids.reshape(B * N) selected = (input_ids == self.img_context_token_id) assert selected.sum() != 0 input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device) input_embeds = input_embeds.reshape(B, N, C) outputs = self.language_model.generate( inputs_embeds=input_embeds, attention_mask=attention_mask, **generate_kwargs, ) return outputs def run_test( hf_runner: Type[HfRunner], vllm_runner: Type[VllmRunner], image_assets: _ImageAssets, model: str, *, size_factors: List[float], dtype: str, max_tokens: int, num_logprobs: int, tensor_parallel_size: int, distributed_executor_backend: Optional[str] = None, ): """Inference result should be the same between hf and vllm. All the image fixtures for the test is under tests/images. For huggingface runner, we provide the PIL images as input. For vllm runner, we provide MultiModalDataDict objects and corresponding vision language config as input. Note, the text input is also adjusted to abide by vllm contract. The text output is sanitized to be able to compare with hf. """ images = [asset.pil_image for asset in image_assets] inputs_per_image = [( [prompt for _ in size_factors], [rescale_image_size(image, factor) for factor in size_factors], ) for image, prompt in zip(images, HF_IMAGE_PROMPTS)] # NOTE: take care of the order. run vLLM first, and then run HF. # vLLM needs a fresh new process without cuda initialization. # if we run HF first, the cuda initialization will be done and it # will hurt multiprocessing backend with fork method (the default method). # max_model_len should be greater than image_feature_size with vllm_runner(model, max_model_len=4096, dtype=dtype, tensor_parallel_size=tensor_parallel_size, distributed_executor_backend=distributed_executor_backend, enforce_eager=True) as vllm_model: vllm_outputs_per_image = [ vllm_model.generate_greedy_logprobs(prompts, max_tokens, num_logprobs=num_logprobs, images=images) for prompts, images in inputs_per_image ] with hf_runner(model, dtype=dtype) as hf_model: img_context_token_id = hf_model.tokenizer.convert_tokens_to_ids( "") hf_model.model.img_context_token_id = img_context_token_id hf_model.processor = InternVLProcessor(hf_model) hf_model.model.get_output_embeddings = lambda: \ hf_model.model.language_model.get_output_embeddings() hf_model.model.generate = types.MethodType(generate, hf_model.model) eos_token_id = hf_model.tokenizer.eos_token_id hf_outputs_per_image = [ hf_model.generate_greedy_logprobs_limit(prompts, max_tokens, num_logprobs=num_logprobs, images=hf_images, eos_token_id=eos_token_id) for prompts, hf_images in inputs_per_image ] for hf_outputs, vllm_outputs in zip(hf_outputs_per_image, vllm_outputs_per_image): # TODO: Check whether using original CLIPVisionModel can improve # consistency against HF check_logprobs_close( outputs_0_lst=hf_outputs, outputs_1_lst=vllm_outputs, name_0="hf", name_1="vllm", ) target_dtype = "half" if is_cpu(): target_dtype = "bfloat16" @pytest.mark.parametrize("model", models) @pytest.mark.parametrize( "size_factors", [ # No image [], # Single-scale [1.0], # Single-scale, batched [1.0, 1.0, 1.0], # Multi-scale [0.25, 0.5, 1.0], ], ) @pytest.mark.parametrize("dtype", [target_dtype]) @pytest.mark.parametrize("max_tokens", [128]) @pytest.mark.parametrize("num_logprobs", [5]) @torch.inference_mode() def test_models(hf_runner, vllm_runner, image_assets, model, size_factors, dtype: str, max_tokens: int, num_logprobs: int) -> None: run_test( hf_runner, vllm_runner, image_assets, model, size_factors=size_factors, dtype=dtype, max_tokens=max_tokens, num_logprobs=num_logprobs, tensor_parallel_size=1, )