#pragma once #include #include #include void swap_blocks(torch::Tensor& src, torch::Tensor& dst, const torch::Tensor& block_mapping); // Note: the key_caches and value_caches vectors are constant but // not the Tensors they contain. The vectors need to be const refs // in order to satisfy pytorch's C++ operator registration code. void copy_blocks(std::vector const& key_caches, std::vector const& value_caches, const torch::Tensor& block_mapping); void copy_blocks_mla(std::vector const& kv_caches, const torch::Tensor& block_mapping); void reshape_and_cache(torch::Tensor& key, torch::Tensor& value, torch::Tensor& key_cache, torch::Tensor& value_cache, torch::Tensor& slot_mapping, const std::string& kv_cache_dtype, torch::Tensor& k_scale, torch::Tensor& v_scale); void reshape_and_cache_flash(torch::Tensor& key, torch::Tensor& value, torch::Tensor& key_cache, torch::Tensor& value_cache, torch::Tensor& slot_mapping, const std::string& kv_cache_dtype, torch::Tensor& k_scale, torch::Tensor& v_scale); void concat_and_cache_mla(torch::Tensor& kv_c, torch::Tensor& k_pe, torch::Tensor& kv_cache, torch::Tensor& slot_mapping, const std::string& kv_cache_dtype, torch::Tensor& scale); // Just for unittest void convert_fp8(torch::Tensor& dst_cache, torch::Tensor& src_cache, const double scale, const std::string& kv_cache_dtype); void gather_cache( torch::Tensor const& src_cache, // [NUM_BLOCKS, BLOCK_SIZE, ENTRIES...] torch::Tensor const& dst, // [TOT_TOKENS, ENTRIES...] torch::Tensor const& block_table, // [BATCH, BLOCK_INDICES] torch::Tensor const& cu_seq_lens, // [BATCH+1] int64_t batch_size, std::optional seq_starts = std::nullopt);